A273930
Amicable 5-tuples: (x1,...,x5) such that sigma(x1)=...=sigma(x5)=x1+...+x5, x1
Original entry on oeis.org
59509850400, 68763895200, 72747675000, 88410722400, 88021533600, 89894684880, 89894684880, 90391981680, 102481394400
Offset: 1
A273931
Amicable 5-tuples: (x1,...,x5) such that sigma(x1)=...=sigma(x5)=x1+...+x5, x1
Original entry on oeis.org
59999219280, 69626138400, 73605331800, 89398663200, 89398663200, 90391981680, 94320626400, 94832992800, 103169959200
Offset: 1
A273933
Amicable 5-tuples: (x1,...,x5) such that sigma(x1)=...=sigma(x5)=x1+...+x5, x1
Original entry on oeis.org
60074174160, 71957405520, 75710489400, 96058282320, 96058282320, 97306569360, 96759542880, 94972878000, 109117562400
Offset: 1
A273934
Amicable 5-tuples: (x1,...,x5) such that sigma(x1)=...=sigma(x5)=x1+...+x5, x1
Original entry on oeis.org
61695597600, 72598125600, 78953074200, 96369633360, 96369633360, 103073639760, 99692021520, 100469023200, 109446377040
Offset: 1
A273936
Amicable 5-tuples: (x1,...,x5) such that sigma(x1)=...=sigma(x5)=x1+...+x5, x1
Original entry on oeis.org
294821130240, 350100092160, 368526412800, 457350727680, 457350727680, 466800122880, 466800122880, 466800122880, 522686545920
Offset: 1
A383239
Integers k such that there exists an integer 0
Original entry on oeis.org
1740, 7776, 22428, 55968, 106140, 143910, 198792, 246510, 309582, 326196, 411138, 421596, 428256, 590112, 639288, 697158, 870552, 941094, 958716, 1060956, 1087776, 1105884, 1269828, 1341660, 1361568, 1447620, 1495494, 1512810, 1626324, 1727940, 1819392
Offset: 1
For k=2, alpha_1=1, alpha_2=2 we have (1560, 1740), (7380, 7776), (20664, 22428), (543456, 590112), (588744, 639288),
A384487
Numbers k such that there exist two integers 0
Original entry on oeis.org
396, 504, 600, 756, 840, 924, 1056, 1080, 1140, 1170, 1260, 1320, 1428, 1440, 1488, 1512, 1540, 1560, 1596, 1638, 1650, 1656, 1680, 1704, 1710, 1740, 1800, 1820, 1840, 1848, 1872, 1932, 1980, 2016, 2040, 2100, 2160, 2184, 2232, 2244, 2256, 2280, 2340, 2352, 2380, 2400, 2430, 2436, 2448, 2460, 2484
Offset: 1
504 is a term because (72, 360, 504) is a triple with 72/sigma(72) + 360/sigma(360) + 504/sigma(504) = 1.
420 is not a term because the corresponding triple is (84, 420, 420).
-
S:= {}: S2:= {}: R:= NULL: count:= 0:
for k from 1 while count < 100 do
v:= k/numtheory:-sigma(k);
if member(1-v,S2) then
R:= R, k; count:= count+1;
fi;
S2:= S2 union map(t -> `if`(t+v<1,t+v,NULL),S);
S:= S union {v};
od:
R; # Robert Israel, Jul 01 2025
-
isok(k) = for (i=1, k-1, for (j=i+1, k-1, if (i/sigma(i) + j/sigma(j) + k/sigma(k) == 1, /* print([i,j,k]); */ return(1)););); \\ Michel Marcus, Jun 02 2025
A385852
Integers x such that there exist two integers 0
Original entry on oeis.org
79170, 150150, 158340, 161070, 232050, 237510, 300300, 316680, 322140, 395850, 450450, 464100, 468930, 474810, 475020, 483210, 554190, 570570, 600600, 622440, 633360, 641550, 644280, 696150, 712530, 750750, 791700, 805350, 937860, 949620, 950040, 963270, 966420
Offset: 1
79170 is in the sequence since psi(79170) = psi(80850) = psi(81900) = 241920 = 79170 + 80850 + 81900. Other examples: (161070, 161070, 161700), (7063980, 7112490, 7112490).
A255215
Numbers that belong to at least one amicable tuple.
Original entry on oeis.org
1, 220, 284, 1184, 1210, 1980, 2016, 2556, 2620, 2924, 5020, 5564, 6232, 6368, 9180, 9504, 10744, 10856, 11556, 12285, 14595, 17296, 18416, 21168, 22200, 23940, 27312, 31284, 32136, 37380, 38940, 39480, 40068, 40608, 41412, 41952, 42168, 43890, 46368, 47124
Offset: 1
1 belongs to this sequence because {1} is considered an amicable one-tuple.
284 belongs to this sequence because {220, 284} is an amicable pair.
2016 belongs to this sequence because {1980, 2016, 2556} is an amicable triple.
38940 is included in this sequence only once even if both {38940, 40068, 41952} and {38940, 40608, 41412} are amicable.
1000 does not belong to this sequence. To prove that, note that sigma(1000)=2340. Then find all x such that sigma(x)=2340, these are 792, 1000, 1062, 1305, 1611, 1945, 2339. Run through all subsets of 792, 1000, 1062, 1305, 1611, 1945, 2339 that include 1000 to verify that no such subset has a sum of 2340.
A tuple (or multiset) like {1560, 1740, 1740} where some element(s) are repeated, is not allowed here, and neither 1560 nor 1740 belongs to this sequence.
Cf.
A259307 (duplicates allowed in tuple).
-
(notSubsetSum(desiredSum, searchSet) = { /* strongly inspired by is_A006037 function from A006037 */ local(t); /* return nonzero iff desiredSum is not the sum of a subset of searchSet */ setsearch( Set(searchSet), desiredSum ) & return /* equal to one element of searchSet */; while( #searchSet & searchSet[ #searchSet]>desiredSum, searchSet=vecextract(searchSet, "^-1")); desiredSum >= (t = sum(i=1, #searchSet, searchSet[i])) & return( desiredSum-t /* nonzero if desiredSum>t */ ); desiredSum > searchSet[ #searchSet] & ! notSubsetSum( desiredSum - searchSet[ #searchSet], searchSet=vecextract( searchSet, "^-1" )) & return; notSubsetSum( desiredSum, searchSet ) }); (othersWithSameSigma(n) = { s=sigma(n); [ x | x<-[1..s-1] , sigma(x)==s&&x!=n ] }); (is_A255215(x) = !notSubsetSum(sigma(x)-x, othersWithSameSigma(x)))
A386726
Numbers x such that there exist two integers 0
Original entry on oeis.org
2, 238, 280, 308, 310, 382, 790, 795, 920, 952, 1034, 1162, 1246, 1330, 1410, 1434, 2002, 2024, 2506, 2632, 2728, 2750, 2926, 3040, 3210, 3452, 3496, 3500, 3630, 4134, 4260, 4466, 4550, 4968, 5080, 5278, 5396, 5520, 5530, 5756, 6128, 6230, 6426, 6888, 7288, 7584, 7640, 7910, 7990
Offset: 1
238 is in the sequence since sigma(238) = sigma(255) = sigma(371) = 432 = (238 + 255 + 371)/2.
-
isok(x1) = my(s=sigma(x1), vx=select(x->(x>=x1), invsigma(s)), v=vector(3, i, vx[1])); for (i=1, #vx, v[2] = vx[i]; for (j=1, #vx, v[3] = vx[j]; if (vecsum(v) == 2*s, return(1)););); \\ Michel Marcus, Aug 01 2025
Comments