cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-22 of 22 results.

A330858 Triangle read by rows: T(n,k) is the number of permutations in S_n for which all cycles have length <= k.

Original entry on oeis.org

1, 1, 2, 1, 4, 6, 1, 10, 18, 24, 1, 26, 66, 96, 120, 1, 76, 276, 456, 600, 720, 1, 232, 1212, 2472, 3480, 4320, 5040, 1, 764, 5916, 14736, 22800, 29520, 35280, 40320, 1, 2620, 31068, 92304, 164880, 225360, 277200, 322560, 362880, 1, 9496, 171576, 632736
Offset: 1

Views

Author

Peter Kagey, Apr 28 2020

Keywords

Examples

			For n = 3 and k = 2, the T(3,2) = 4 permutations in S_3 where all cycle lengths are less than or equal to 2 are:
(1)(2)(3), (12)(3), (13)(2), and (1)(23).
Table begins:
n\k| 1    2     3     4      5      6      7      8      9
---+------------------------------------------------------
  1| 1
  2| 1    2
  3| 1    4     6
  4| 1   10    18    24
  5| 1   26    66    96    120
  6| 1   76   276   456    600    720
  7| 1  232  1212  2472   3480   4320   5040
  8| 1  764  5916 14736  22800  29520  35280  40320
  9| 1 2620 31068 92304 164880 225360 277200 322560 362880
		

Crossrefs

T(n,floor(n/2)) gives A024168.
Cf. A126074.

Programs

  • Mathematica
    T[n_, k_] := T[n, k] = If[n <= k, n!, n*T[n-1, k] - FactorialPower[n-1, k]* T[n-k-1, k]];
    Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Apr 28 2020 *)
  • PARI
    T4(n, k)=if(k<1 || k>n, 0, n!/(n-k)!); \\ A068424
    T(n,k) = if (n<=k, n!, n*T(n-1,k) - T4(n-1,k)*T(n-k-1,k));
    tabl(nn) = for (n=1, nn, for (k=1, n, print1(T(n,k), ", ")); print); \\ Michel Marcus, May 09 2020

Formula

T(n,k) = n! if n <= k, otherwise T(n,k) = n*T(n-1,k) - A068424(n-1,k)*T(n-k-1,k).
T(n,k) = Sum_{j=1..k} A126074(n,j). - Alois P. Heinz, Jul 08 2022

A338001 Irregular triangle read by rows, a refinement of A271708.

Original entry on oeis.org

1, 0, 1, 0, 2, 2, 0, 6, 2, 3, 0, 24, 8, 4, 3, 4, 0, 120, 8, 12, 6, 6, 4, 5, 0, 720, 48, 16, 48, 18, 6, 18, 8, 8, 5, 6, 0, 5040, 48, 48, 240, 18, 24, 12, 72, 12, 8, 24, 10, 10, 6, 7, 0, 40320, 384, 96, 192, 1440, 36, 36, 24, 36, 360, 32, 12, 32, 16, 96, 15, 10, 30, 12, 12, 7, 8
Offset: 0

Views

Author

Peter Luschny, Nov 13 2020

Keywords

Comments

Row n of the triangle gives the sizes of the centralizers of any permutation of cycle type given by the partitions of n with max. part k.
T(n, k) divides n! if k > 0 and in this case the n!/T(n, k) give, up to order, the rows of A036039.

Examples

			Triangle rows start:
0: [1];
1: [0], [1];
2: [0], [2],    [2];
3: [0], [6],    [2],           [3];
4: [0], [24],   [8, 4],        [3],              [4];
5: [0], [120],  [8, 12],       [6, 6],           [4],         [5];
6: [0], [720],  [48, 16, 48],  [18, 6, 18],      [8, 8],      [5],      [6];
7: [0], [5040], [48, 48, 240], [18, 24, 12, 72], [12, 8, 24], [10, 10], [6], [7];
.
For n = 4 the partition of 4 with cycle type [2, 2] has centralizer size 8, and the partition [2, 1, 1] has centralizer size 4. Therefore in column 2 in the above triangle the pair [8, 4] appears.
		

Crossrefs

Cf. A271708, A110143 (row sums), A052810 (row length), A126074, A036039.

Programs

  • SageMath
    def A338001(n):
        R = []
        for k in (0..n):
            P = Partitions(n, max_part=k, inner=[k])
            q = [p.aut() for p in P]
            R.append(q if q != [] else [0])
        return flatten(R)
    for n in (0..7): print(A338001(n))
Previous Showing 21-22 of 22 results.