cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A242233 2^n*(C_n)^(1/2) in the Cauchy type product where C_n is the n-th Catalan number.

Original entry on oeis.org

1, 1, 3, 11, 41, 137, 347, 611, 5777, 98321, 677363, -4192197, -134908871, -617972327, 22749265099, 449951818387, -632325203423, -163681108703199, -2324079456844573, 33233931805782635, 1734259111955765577, 14135975420529458857, -777499293367428199109
Offset: 0

Views

Author

Peter Luschny, May 08 2014

Keywords

Crossrefs

Programs

  • Maple
    f := sqrt(exp(2*x)*(BesselI(0,2*x)-BesselI(1,2*x)));
    seq(2^n*n!*coeff(series(f,x,n+1),x,n),n=0..22);
    # Second program with function g from A241885:
    catalan := n -> binomial(2*n,n)/(n+1);
    a := n -> 2^n*g(catalan, n); seq(a(n), n=0..22);
  • Mathematica
    g[n_] := g[n] = (CatalanNumber[n] - Sum[Binomial[n, m] g[m] g[n - m], {m, 1, n - 1}])/2;
    a[0] = 1; a[n_] := 2^n g[n];
    Table[a[n], {n, 0, 22}] (* Jean-François Alcover, Aug 02 2019, from 2nd Maple program *)
  • Maxima
    a[n]:=if n=0 then 1 else sum(a[n-k]*binomial(n, k)*(2*k)!*(3*k/(2*n)-1)*2^k/(k!*(k+1)!), k, 1, n); makelist(a[n],n,0,50); /* Tani Akinari, Nov 05 2024 */

Formula

a(n) = 2^n*n!*[x^n](sqrt(exp(2*x)*(BesselI(0,2*x)-BesselI(1,2*x)))), where [x^n](f(x)) the coefficient of x^n in f(x).
For n > 0, a(n) = Sum_{k=1..n} a(n-k)*binomial(n,k)*(2*k)!*(3*k/(2*n)-1)*2^k/(k!*(k+1)!). - Tani Akinari, Nov 05 2024

A365671 a(n) = denominator(4^n * n! * [x^n] sqrt(x / (e^x - 1))).

Original entry on oeis.org

1, 1, 3, 1, 5, 3, 21, 3, 45, 5, 11, 1, 91, 35, 45, 3, 17, 3, 1995, 21, 3465, 165, 115, 45, 2925, 819, 189, 7, 145, 5, 341, 11, 1309, 119, 1, 1, 9139, 247, 65, 7, 2255, 495, 148995, 3465, 108675, 2415, 1645, 7, 270725, 5525, 21879, 429, 583, 33, 4389, 399, 4959
Offset: 0

Views

Author

Peter Luschny, Sep 29 2023

Keywords

Crossrefs

Cf. A241885 (numerator), A126156.

Programs

  • Maple
    egf := sqrt(x/(exp(x)-1)): ser := series(egf, x, 64):
    seq(denom(4^n*n!*coeff(ser,x,n)), n = 0..56);
    # Alternative, using the Singh transformation 'g' from Maple in A126156:
    b := n -> 4^n*g(bernoulli, n); seq(denom(b(n)), n = 0..56);
Previous Showing 11-12 of 12 results.