cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A235683 Numbers n such that (46^n + 1)/47 is prime.

Original entry on oeis.org

7, 23, 59, 71, 107, 223, 331, 2207, 6841, 94841
Offset: 1

Views

Author

Robert Price, Jan 13 2014

Keywords

Comments

All terms up to a(10) are primes.
a(11) > 10^5.

Crossrefs

Programs

  • Mathematica
    Do[ p=Prime[n]; If[ PrimeQ[ (46^p + 1)/47 ], Print[p] ], {n, 1, 9592} ]
  • PARI
    is(n)=ispseudoprime((46^n+1)/47) \\ Charles R Greathouse IV, May 22 2017

A237052 Numbers n such that (49^n + 1)/50 is prime.

Original entry on oeis.org

7, 19, 37, 83, 1481, 12527, 20149
Offset: 1

Views

Author

Robert Price, Feb 02 2014

Keywords

Comments

All terms are primes.
a(8) > 10^5.

Crossrefs

Programs

  • Mathematica
    Do[ p=Prime[n]; If[ PrimeQ[ (49^p + 1)/50 ], Print[p] ], {n, 1, 9592} ]
  • PARI
    is(n)=ispseudoprime((49^n+1)/50) \\ Charles R Greathouse IV, Jun 13 2017

Extensions

Typo in description corrected by Ray Chandler, Feb 20 2017

A236167 Numbers k such that (47^k + 1)/48 is prime.

Original entry on oeis.org

5, 19, 23, 79, 1783, 7681
Offset: 1

Views

Author

Robert Price, Jan 19 2014

Keywords

Comments

a(7) > 10^5.

Crossrefs

Programs

  • Mathematica
    Do[ p=Prime[n]; If[ PrimeQ[ (47^p + 1)/48 ], Print[p] ], {n, 1, 9592} ]
  • PARI
    is(n)=ispseudoprime((47^n+1)/48) \\ Charles R Greathouse IV, Jun 06 2017
    
  • Python
    from sympy import isprime
    def afind(startat=0, limit=10**9):
      pow47 = 47**startat
      for k in range(startat, limit+1):
        q, r = divmod(pow47+1, 48)
        if r == 0 and isprime(q): print(k, end=", ")
        pow47 *= 47
    afind(limit=300) # Michael S. Branicky, May 19 2021

A185230 Numbers n such that (33^n + 1)/34 is prime.

Original entry on oeis.org

5, 67, 157, 12211, 313553
Offset: 1

Views

Author

Robert Price, Aug 29 2013

Keywords

Comments

All terms are prime.
a(5) > 10^5.

Crossrefs

Programs

  • Mathematica
    Do[ p=Prime[n]; If[ PrimeQ[ (33^p + 1)/34 ], Print[p] ], {n, 1, 9592} ]
  • PARI
    is(n)=ispseudoprime((33^n+1)/34) \\ Charles R Greathouse IV, Jun 13 2017

Extensions

a(5) from Paul Bourdelais, Feb 26 2021

A236530 Numbers n such that (48^n + 1)/49 is prime.

Original entry on oeis.org

5, 17, 131, 84589
Offset: 1

Views

Author

Robert Price, Jan 27 2014

Keywords

Comments

All terms are primes.
a(5) > 10^5.

Crossrefs

Programs

  • Mathematica
    Do[ p=Prime[n]; If[ PrimeQ[ (48^p + 1)/49 ], Print[p] ], {n, 1, 9592} ]
  • PARI
    is(n)=ispseudoprime((48^n+1)/49) \\ Charles R Greathouse IV, Jun 13 2017

Extensions

Incorrect first term deleted by Robert Price, Feb 21 2014

A246005 Least k such that ((2n+1)^k-1)/2n is prime, or 0 if no such k exists.

Original entry on oeis.org

3, 3, 5, 0, 17, 5, 3, 3, 19, 3, 5, 0, 3, 5, 7, 3, 313, 13, 349, 3, 5, 19, 127, 0, 4229, 11, 17, 3, 3, 7, 5, 19, 19, 3, 3, 5, 3, 3, 5, 0, 5, 5, 7, 3, 4421, 7, 7, 17, 3, 3, 19, 3, 17, 17, 3, 23, 7, 3, 3, 0, 43, 0, 5, 5, 3, 13, 1171, 11, 163, 3, 3, 5, 3, 7, 13, 3, 3, 17, 13, 3, 7, 5, 3, 0, 181, 3, 5, 5, 19, 17, 223
Offset: 1

Views

Author

Eric Chen, Nov 13 2014

Keywords

Comments

a(92) > 10000, a(93)..a(133) = {37, 3, 17, 5, 11, 31, 577, 271, 3, 19, 13, 3, 41, 137, 3, 281, 13, 7, 239, 0, 5, 11, 3, 113, 7, 7, 5, 17, 0, 3, 17, 5, 7, 19, 5, 23, 2011, 31, 5, 5, 13}, a(134) > 10000, a(135)..a(139) = {41, 37, 5, 5, 3}, a(140) > 10000, a(141)..a(150) = {29, 5, 3, 0, 13, 3, 17, 17, 113, 193}.

Examples

			a(23) = 127 because 2 * 23 + 1 = 47, (47^k-1)/46 is composite for k = 2, 3, ..., 126 and prime for k = 127.
		

Crossrefs

Programs

  • PARI
    a(n) = {l=List([4, 12, 24, 40, 60, 62, 84]); for(q=1, 91, if(n==l[q], return(0))); k=1; while(k, s=((2*n+1)^prime(k)-1)/(2*n); if(ispseudoprime(s), return(prime(k))); k++)} \\ Eric Chen, Nov 14 2014

Formula

a(n) = A084740(2n+1).
Previous Showing 11-16 of 16 results.