cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 60 results.

A130540 Triangle read by rows T(n,k) in which column k lists the terms of A000203 interspersed with (k-1) zeros, 1 <= k <= n.

Original entry on oeis.org

1, 3, 1, 4, 0, 1, 7, 3, 0, 1, 6, 0, 0, 0, 1, 12, 4, 3, 0, 0, 1, 8, 0, 0, 0, 0, 0, 1, 15, 7, 0, 3, 0, 0, 0, 1, 13, 0, 4, 0, 0, 0, 0, 0, 1, 18, 6, 0, 0, 3, 0, 0, 0, 0, 1, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 28, 12, 7, 4, 0, 3, 0, 0, 0, 0, 0, 1, 14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 24, 8, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Gary W. Adamson, Jun 03 2007

Keywords

Comments

The original definition was: A127093 * A125093^(-1).
Left border = A000203, sigma(n): (1, 3, 4, 7, 6, ...). Row sums = A007429: (1, 4, 5, 11, 7, 20, 9, ...); = inverse Moebius transform applied to sigma(n); (i.e., inverse Moebius transform applied twice to natural numbers).
T(n,k) is the total number of parts congruent to 0 mod k in the partitions of n into equal parts. - Omar E. Pol, Nov 19 2019
From Omar E. Pol, Jan 01 2020: (Start)
Conjecture 1: the sum of odd-indexed terms in row n equals A327096(n).
Conjecture 2: the sum of even-indexed terms in row n equals the n-th term of the sequence formed by A000004 and A007429 interleaved.
Conjecture 3: alternating row sums give A288417. (End)

Examples

			First few rows of the triangle are:
   1;
   3,  1;
   4,  0, 1;
   7,  3, 0, 1;
   6,  0, 0, 0, 1;
  12,  4, 3, 0, 0, 1;
   8,  0, 0, 0, 0, 0, 1;
  15,  7, 0, 3, 0, 0, 0, 1;
  13,  0, 4, 0, 0, 0, 0, 0, 1;
  18,  6, 0, 0, 3, 0, 0, 0, 0, 1;
  12,  0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
  28, 12, 7, 4, 0, 3, 0, 0, 0, 0, 0, 1;
  14,  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
  24,  8, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 1;
  24,  0, 6, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
  31, 15, 0, 7, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 1;
...
Extended by _Omar E. Pol_, Nov 19 2019
		

Crossrefs

Formula

A127093 * A125093^(-1), as infinite lower triangular matrices.

Extensions

New name and more terms from Omar E. Pol, Nov 19 2019

A143152 Inverse Möbius transform of the least prime factor of n: A051731 * A020639.

Original entry on oeis.org

1, 3, 4, 5, 6, 8, 8, 7, 7, 10, 12, 12, 14, 12, 12, 9, 18, 13, 20, 14, 14, 16, 24, 16, 11, 18, 10, 16, 30, 20, 32, 11, 18, 22, 18, 19, 38, 24, 20, 18, 42, 22, 44, 20, 18, 28, 48, 20, 15, 17, 24, 22, 54, 18, 22, 20, 26, 34, 60, 28, 62, 36, 20, 13, 24, 26, 68, 26, 30, 26, 72, 25, 74
Offset: 1

Views

Author

Gary W. Adamson, Jul 27 2008

Keywords

Examples

			a(4) = 5 = (1, 1, 0, 1) dot (1, 2, 3, 2) = (1 + 2 + 0 + 2), where (1, 1, 0, 1) = row 4 of triangle A051731 and A010639 = (1, 2, 3, 2, 5, 2, 7, 2, 3, 2, 11,...).
Since a(n) = sum of least prime factors of the divisors of n, the divisors of 12 are recorded in triangle row 12 of A127093: (1, 2, 3, 4, 0, 6, 0, 0, 0, 0, 0, 12). Lpf of these terms = row 12 of triangle A143151: (1, 2, 3, 2, 0, 2, 0, 0, 0, 0, 0, 2); sum = 12.
		

Crossrefs

Programs

  • Maple
    read transforms : A020639 := proc(n) local i ; if n = 1 then 1; else for i from 1 do if n mod ithprime(i) = 0 then RETURN(ithprime(i)) ; fi; od: fi; end: a020639 := [seq(A020639(n),n=1..100)] : a143152 := MOBIUSi(a020639) : for i from 1 to nops(a143152) do printf("%d,",op(i,a143152)) ; od: # R. J. Mathar, Aug 11 2008
  • PARI
    A020639(n) = if(1==n,n,(factor(n)[1, 1]));
    A143152(n) = sumdiv(n,d,A020639(d)); \\ Antti Karttunen, Nov 12 2021

Formula

a(p) = (p+1) for prime p.
Inverse Mobius transform of A020639, where A020639(n) = Lpf(n).
Row sums of triangle A143151.
a(n) = Sum_{d|n} A020639(d). - Antti Karttunen, Nov 12 2021

Extensions

Extended beyond a(14) by R. J. Mathar, Aug 11 2008
Name amended by Antti Karttunen, Nov 12 2021

A307662 Triangle T(i,j=1..i) read by rows which contain the naturally ordered divisors-or-ones of the row number i.

Original entry on oeis.org

1, 1, 2, 1, 1, 3, 1, 2, 1, 4, 1, 1, 1, 1, 5, 1, 2, 3, 1, 1, 6, 1, 1, 1, 1, 1, 1, 7, 1, 2, 1, 4, 1, 1, 1, 8, 1, 1, 3, 1, 1, 1, 1, 1, 9, 1, 2, 1, 1, 5, 1, 1, 1, 1, 10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 1, 2, 3, 4, 1, 6, 1, 1, 1, 1, 1, 12, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 13
Offset: 1

Views

Author

I. V. Serov, Apr 20 2019

Keywords

Comments

Replace 0 with 1 in A127093. - Omar E. Pol, Apr 21 2019

Examples

			Triangle begins:
  1,
  1, 2,
  1, 1, 3,
  1, 2, 1, 4,
  1, 1, 1, 1, 5,
  1, 2, 3, 1, 1, 6,
  1, 1, 1, 1, 1, 1, 7,
  1, 2, 1, 4, 1, 1, 1, 8,
  1, 1, 3, 1, 1, 1, 1, 1, 9,
  1, 2, 1, 1, 5, 1, 1, 1, 1,10,
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1,11,
  1, 2, 3, 4, 1, 6, 1, 1, 1, 1, 1,12,
  ...
		

Crossrefs

Programs

  • Mathematica
    Table[Map[If[Mod[n, #] == 0, #, 1] &, Range@ n], {n, 13}] // Flatten (* Michael De Vlieger, Apr 23 2019 *)
  • PARI
    row(n) = vector(n, k, if ((n % k) == 0, k, 1)); \\ Michel Marcus, Apr 21 2019

Formula

For j=1..floor(i/2), T(i,j)=T(i-j,j).
For j=floor(i/2)+1..i-1, T(i,j)=1.
T(i,i) = i.
Let i = A002024(n) and j = A002260(n):
a(n) = a((i-j-1)*(i-j)/2+j) if j=1..floor(i/2).
a(n) = 1 if j=floor(i/2)+1..i-1.
a(n) = i if j=i.
T(i,j) = a(n).

A127108 Triangle read by rows, A127099 * A000012.

Original entry on oeis.org

1, 5, 2, 7, 3, 3, 17, 10, 4, 4, 11, 5, 5, 5, 5, 35, 23, 15, 6, 6, 6, 15, 7, 7, 7, 7, 7, 7, 49, 34, 20, 20, 8, 8, 8, 8, 34, 21, 21, 9, 9, 9, 9, 9, 9, 55, 37, 25, 25, 25, 10, 10, 10, 10, 10, 23, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 119, 91, 67, 46, 30, 30, 12, 12, 12, 12, 12, 12
Offset: 0

Views

Author

Gary W. Adamson, Jan 05 2007, Jul 27 2008

Keywords

Comments

The operation A000012 * A127099 generates n-th row of the triangle by taking partial sums of n-th row of triangle A127099. Row 4 of A127099 (7, 6, 0, 4) becomes row 4 of A127108: (17, 10, 4, 4).
Row sums = A001001: (1, 7, 13, 35, 31, 91, ...).
Left column of the triangle = A060640: (1, 5, 7, 17, 11, 35, ...).

Examples

			First few rows of the triangle:
   1;
   5,  2;
   7,  3,  3;
  17, 10,  4,  4;
  11,  5,  5,  5,  5;
  35, 23, 15,  6,  6,  6;
  15,  7,  7,  7,  7,  7,  7;
  49, 34, 20, 20,  8,  8,  8,  8;
  34, 21, 21,  9,  9,  9,  9,  9,  9;
  55, 37, 25, 25, 25, 10, 10, 10, 10, 10;
  ...
		

Crossrefs

Formula

Triangle read by rows, A127099 * A000012.

Extensions

Edited by N. J. A. Sloane, Aug 13 2008 at the suggestion of R. J. Mathar

A127573 Triangle T(n, k) = k*sigma(k) if k divides n, else 0.

Original entry on oeis.org

1, 1, 6, 1, 0, 12, 1, 6, 0, 28, 1, 0, 0, 0, 30, 1, 6, 12, 0, 0, 72, 1, 0, 0, 0, 0, 0, 56, 1, 6, 0, 28, 0, 0, 0, 120, 1, 0, 12, 0, 0, 0, 0, 0, 117, 1, 6, 0, 0, 30, 0, 0, 0, 0, 180, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 132, 1, 6, 12, 28, 0, 72, 0, 0, 0, 0, 0, 336
Offset: 1

Views

Author

Gary W. Adamson, Jan 19 2007

Keywords

Comments

Right border = n*sigma(n), A064987; row sums = A001001.

Examples

			First few rows of the triangle:
  1;
  1, 6;
  1, 0, 12;
  1, 6,  0, 28;
  1, 0,  0,  0, 30;
  ...
		

Crossrefs

Extensions

Corrected, extended and edited by Andrey Zabolotskiy, Sep 18 2022

A127574 Triangle T(n,k) = k*sigma(n) if k divides n, else 0.

Original entry on oeis.org

1, 3, 6, 4, 0, 12, 7, 14, 0, 28, 6, 0, 0, 0, 30, 12, 24, 36, 0, 0, 72, 8, 0, 0, 0, 0, 0, 56, 15, 30, 0, 60, 0, 0, 0, 120, 13, 0, 39, 0, 0, 0, 0, 0, 117, 18, 36, 0, 0, 90, 0, 0, 0, 0, 180, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 132, 28, 56, 84, 112, 0, 168, 0, 0, 0, 0, 0, 336
Offset: 1

Views

Author

Gary W. Adamson, Jan 19 2007

Keywords

Examples

			First few rows of the triangle are:
   1;
   3,  6;
   4,  0, 12;
   7, 14,  0, 28;
   6,  0,  0,  0, 30;
  12, 24, 36,  0,  0, 72;
  ...
		

Crossrefs

Cf. A127093, A127573, A064987, A000203, A072861 (row sums).

Formula

T(n,k) = Sum_{j=k..n} A130208(n,j)*A127093(j,k), product of the two infinite lower triangular matrices.
T(n,1) = A000203(n).
T(n,n) = A064987(n).

A127626 Triangle T(n,k) = A018804(k) if k|n, else T(n,k)=0.

Original entry on oeis.org

1, 1, 3, 1, 0, 5, 1, 3, 0, 8, 1, 0, 0, 0, 9, 1, 3, 5, 0, 0, 15, 1, 0, 0, 0, 0, 0, 13, 1, 3, 0, 8, 0, 0, 0, 20, 1, 0, 5, 0, 0, 0, 0, 0, 21, 1, 3, 0, 0, 9, 0, 0, 0, 0, 27, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 21, 1, 3, 5, 8, 0, 15, 0, 0, 0, 0, 0, 40, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 25
Offset: 1

Views

Author

Gary W. Adamson, Jan 20 2007

Keywords

Comments

Inverse Mobius transform of a matrix with A018804 in the main diagonal and the rest zeros.

Examples

			First few rows of the triangle are:
1;
1, 3;
1, 0, 5;
1, 3, 0, 8;
1, 0, 0, 0, 9;
1, 3, 5, 0, 0, 15;
...
		

Crossrefs

Cf. A051731, A038040 (row sums), A018804 (diagonal).
Cf. A127093.

Programs

  • Haskell
    a127626 n k = a127626_tabl !! (n-1) !! (k-1)
    a127626_row n = a127626_tabl !! (n-1)
    a127626_tabl = map
       (map (\x -> if x == 0 then 0 else a018804 x)) a127093_tabl
    -- Reinhard Zumkeller, Jan 21 2014

A127651 Triangle T(n,k) = n*k if k|n, 0 otherwise; 1<=k<=n.

Original entry on oeis.org

1, 2, 4, 3, 0, 9, 4, 8, 0, 16, 5, 0, 0, 0, 25, 6, 12, 18, 0, 0, 36, 7, 0, 0, 0, 0, 0, 49, 8, 16, 0, 32, 0, 0, 0, 64, 9, 0, 27, 0, 0, 0, 0, 0, 81, 10, 20, 0, 0, 50, 0, 0, 0, 0, 100, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 121, 12, 24, 36, 48, 0, 72, 0, 0, 0, 0, 0, 144
Offset: 1

Views

Author

Gary W. Adamson, Jan 22 2007

Keywords

Comments

Equals the matrix product A127648 * A127093 as infinite lower triangular matrices.

Examples

			First few rows of the triangle are:
1;
2, 4;
3, 0, 9;
4, 8, 0, 16;
5, 0, 0, 0, 25;
6, 12, 18, 0, 0, 36;
7, 0, 0, 0, 0, 0, 49;
8, 16, 0, 32, 0, 0, 0, 64;
...
		

Crossrefs

Cf. A127648, A127093, A064987 (row sums).

Programs

  • Maple
    A127651 := proc(n,k)
            if n mod k =0 then
                    n*k;
            else
                    0 ;
            end if;
    end proc: # R. J. Mathar, Oct 01 2011

Formula

T(n,k) = n*A127093(n,k). - R. J. Mathar, Oct 01 2011

A138045 Triangle read by rows: largest proper divisor of n as a table, ones excluded.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Mats Granvik, Mar 02 2008

Keywords

Comments

The numbers in the triangle form lines that begin at T(A001248,A000040). The first line of numbers from the right, is T(A005843,A000027). The second line is T(A016945,A005408). The third line is T(A084967,A007310).

Examples

			The first few terms of the table are:
  0
  0,0
  0,0,0
  0,2,0,0
  0,0,0,0,0
  0,0,3,0,0,0
  0,0,0,0,0,0,0
  0,0,0,4,0,0,0,0
  0,0,3,0,0,0,0,0,0
		

Crossrefs

Programs

  • PARI
    up_to = 23220; \\ binomial(215+1,2)
    A032742(n) = if(1==n,n,n/vecmin(factor(n)[,1]));
    A138045tr(n, k) = if((k>1) && (A032742(n)==k), k, 0);
    A138045list(up_to) = { my(v = vector(up_to), i=0); for(n=1,oo, for(k=1,n, i++; if(i > up_to, return(v)); v[i] = A138045tr(n,k))); (v); };
    v138045 = A138045list(up_to);
    A138045(n) = v138045[n]; \\ Antti Karttunen, Dec 24 2018

Formula

T(n,k) = if k==A032742(n) and n(T(n,k))==n(A032742(n)) and k>1 then k else 0 (1<=k<=n), T(1,1)=0.

A143151 Triangle read by rows, A051731 * (A020639 * 0^(n-k)), 1<=k<=n.

Original entry on oeis.org

1, 1, 2, 1, 0, 3, 1, 2, 0, 2, 1, 0, 0, 0, 5, 1, 2, 3, 0, 0, 2, 1, 0, 0, 0, 0, 0, 7, 1, 2, 0, 2, 0, 0, 0, 2, 1, 0, 3, 0, 0, 0, 0, 0, 3, 1, 2, 0, 0, 5, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 1, 2, 3, 2, 0, 2, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 13, 1, 2, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 2
Offset: 1

Views

Author

Gary W. Adamson and Mats Granvik, Jul 27 2008

Keywords

Comments

Row sums = A143152: (1, 3, 4, 5, 6, 8, 8, 7, 7, 10, 12, 12, 14, 12, ...).

Examples

			First few rows of the triangle are:
  1;
  1, 2;
  1, 0, 3;
  1, 2, 0, 2;
  1, 0, 0, 0, 5;
  1, 2, 3, 0, 0, 2;
  1, 0, 0, 0, 0, 0, 7;
  1, 2, 0, 2, 0, 0, 0, 2;
  1, 0, 3, 0, 0, 0, 0, 0, 3;
  1, 2, 0, 0, 5, 0, 0, 0, 0, 2;
  1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11;
  ...
Row 12 = (1, 2, 3, 2, 0, 2, 0, 0, 0, 0, 0, 2) since the divisors of 12 are shown in row 12 of triangle A127093: (1, 2, 3, 4, 0, 6, 0, 0, 0, 0, 0, 12).
Lpf of these terms = row 12 of A143152.
		

Crossrefs

Formula

Triangle read by rows, A051731 * (A020639 * 0^(n-k)), 1<=k<=n; where A020639 = Lpf(n). By rows, least prime factors of the divisors of n, where the divisors of n are recorded in triangle A127093.
Previous Showing 51-60 of 60 results.