cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A227959 Number of tilings using monominoes and L-trominoes in 2 X n chessboard, such that three monominoes cannot occur together in shape of L-tromino.

Original entry on oeis.org

1, 1, 4, 6, 20, 38, 104, 220, 556, 1244, 3024, 6944, 16576, 38536, 91216, 213280, 502864, 1178928, 2774592, 6512864, 15315072, 35969952, 84550912, 198634048, 466825152, 1096838208, 2577550336, 6056474880, 14232064256, 33441977216, 78583660288, 184655188480
Offset: 0

Views

Author

Gopinath A. R., Aug 01 2013

Keywords

Crossrefs

Cf. A127864.

Programs

  • Magma
    I:=[1,1,4,6,20]; [n le 5 select I[n] else 4*Self(n-2)+2*Self(n-3)+ 2*Self(n-4)+4*Self(n-5): n in [1..35]]; // Vincenzo Librandi, Apr 30 2018
  • Mathematica
    LinearRecurrence[{0, 4, 2, 2, 4}, {1, 1, 4, 6, 20}, 33] (* or *) CoefficientList[Series[(1 + x)/(1 - 4 x^2 - 2 x^3 - 2 x^4 - 4 x^5), {x, 0, 33}], x] (* Vincenzo Librandi, Apr 30 2018 *)
  • PARI
    Vec( (1+x)/(1-4*x^2-2*x^3-2*x^4-4*x^5) +O(x^66) ) \\ Joerg Arndt, Aug 07 2013
    
  • Sage
    fx = (1+x)/(1-4*x^2-2*x^3-2*x^4-4*x^5)
    fxt = taylor(fx,x,0,50)
    for i in range(51):
        print(i, fxt.coefficient(x,i))
    

Formula

a(n) = 4*a(n-2) + 2*a(n-3) + 2*a(n-4) + 4*a(n-5), with a(0)=1, a(1)=1, a(2)=4, a(3)=6, and a(4)=20.
G.f.: (1+x)/(1-4*x^2-2*x^3-2*x^4-4*x^5).
Asymptotic formula: a(n) ~ 0.581189405182598 * 2.3498153157195^n.

A245965 Triangle read by rows: T(n,k) is the number of tilings of a 2 X n board with 1 X 1 and L-shaped tiles (where the L-shaped tiles cover 3 squares) that have k 1 X 1 tiles.

Original entry on oeis.org

1, 0, 0, 1, 0, 4, 0, 0, 1, 2, 0, 0, 8, 0, 0, 1, 0, 0, 20, 0, 0, 12, 0, 0, 1, 0, 16, 0, 0, 54, 0, 0, 16, 0, 0, 1, 4, 0, 0, 112, 0, 0, 104, 0, 0, 20, 0, 0, 1, 0, 0, 108, 0, 0, 352, 0, 0, 170, 0, 0, 24, 0, 0, 1, 0, 48, 0, 0, 664, 0, 0, 800, 0, 0, 252, 0, 0, 28, 0, 0, 1, 8, 0, 0, 704, 0, 0, 2280, 0, 0, 1520, 0, 0, 350, 0, 0, 32, 0, 0, 1, 0, 0, 416, 0, 0, 4064, 0, 0, 5820, 0, 0, 2576, 0, 0, 464, 0, 0, 36, 0, 0, 1
Offset: 0

Views

Author

Emeric Deutsch, Aug 15 2014

Keywords

Comments

Row n has 2n+1 entries.
Sum of entries in row n = A127864(n).
Sum_{k>=0} k*T(n,k) = A127865(n).

Examples

			T(2,1)=4 because we can place the 1 X 1 tile in any corner of the 2 X 2 board.
Triangle starts:
  1;
  0,  0,  1;
  0,  4,  0,  0,  1;
  2,  0,  0,  8,  0,  0,  1;
  0,  0, 20,  0,  0, 12,  0,  0,  1;
		

Crossrefs

Programs

  • Maple
    G := 1/(1-t^2*z-4*t*z^2-2*z^3): Gser := simplify(series(G, z = 0, 15)): for j from 0 to 13 do P[j] := sort(coeff(Gser, z, j)) end do: for j from 0 to 13 do seq(coeff(P[j], t, i), i = 0 .. 2*j) end do; # yields sequence in triangular form

Formula

G.f.: 1/(1-t^2*z - 4*t*z^2 - 2*z^3).
The trivariate g.f. with z marking length, t marking 1 X 1 tiles, and s marking L-shaped tiles is 1/(1-t^2*z-4*t*s*z^2-2*s^2*z^3).
From Robert Israel, Aug 15 2014: (Start)
T(n+3,k+2) = T(n+2,k) + 4*T(n+1,k+1) + 2*T(n,k+2).
T(n,0) = 2^(n/3) if n == 0 (mod 3), T(n,0) = 0 otherwise.
T(n,1) = (n+1)*2^((n+4)/3)/3 if n == 2 (mod 3), T(n,1) = 0 otherwise.
(End)

A245966 Triangle read by rows: T(n,k) is the number of tilings of a 2 X n board with 1 X 1 and L-shaped tiles (where the L-shaped tiles cover 3 squares) that have k L-shaped tiles.

Original entry on oeis.org

1, 1, 1, 4, 1, 8, 2, 1, 12, 20, 1, 16, 54, 16, 1, 20, 104, 112, 4, 1, 24, 170, 352, 108, 1, 28, 252, 800, 664, 48, 1, 32, 350, 1520, 2280, 704, 8, 1, 36, 464, 2576, 5820, 4064, 416, 1, 40, 594, 4032, 12404, 14784, 4560, 128, 1, 44, 740, 5952, 23408, 41104, 25376, 3200, 16
Offset: 0

Views

Author

Emeric Deutsch, Aug 15 2014

Keywords

Comments

Row n contains 1+floor(2n/3) entries.
Sum of entries in row n = A127864(n).
Sum_{k>=0} k*T(n,k) = A127866(n).

Examples

			T(2,1) = 4 because we can place the L-shaped tile in the 2*2 board in 4 positions.
Triangle starts:
  1;
  1;
  1,  4;
  1,  8,  2;
  1, 12, 20;
  1, 16, 54, 16;
		

Crossrefs

Programs

  • Maple
    G := 1/(1-z-4*t*z^2-2*t^2*z^3): Gser := simplify(series(G, z = 0, 15)): for j from 0 to 13 do P[j] := sort(coeff(Gser, z, j)) end do: for j from 0 to 13 do seq(coeff(P[j], t, i), i = 0 .. floor(2*j*(1/3))) end do; # yields sequence in triangular form

Formula

G.f.: 1/(1 - z - 4*t*z^2 - 2*t^2*z^3).
The trivariate g.f. with z marking length, t marking 1 X 1 tiles, and s marking L-shaped tiles is 1/(1 - t^2*z - 4*t*s*z^2 - 2*s^2*z^3).

A337492 a(n) = a(n-1) + 4*a(n-3) + 2*a(n-4) + 2*a(n-5); a(0) = a(1) = a(2) = 1, a(3) = 5, a(4) = 11.

Original entry on oeis.org

1, 1, 1, 5, 11, 19, 43, 99, 207, 439, 959, 2071, 4439, 9567, 20647, 44463, 95751, 206351, 444631, 957855, 2063687, 4446415, 9579799, 20639519, 44468263, 95807663, 206418167, 444729855, 958176071
Offset: 0

Views

Author

Sujay Champati and Greg Dresden, Aug 29 2020

Keywords

Comments

Number of tilings of a 3 X n rectangle with 1 X 1 squares and L-shaped tiles (where the L-shaped tile covers 5 squares).

Examples

			Here is one of the 11 ways to tile a 3 X 4 rectangle:
._______
| |_|_|_|
| |_|_|_|
|_ _ _|_|
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1, 0, 4, 2, 2}, {1, 1, 1, 5, 11}, 50]

Formula

G.f.: 1/(1-x-4*x^3-2*x^4-2*x^5). - R. J. Mathar, Sep 03 2020
Sum_{k=0..n} a(k) = (a(n+3)+4*a(n)+2*a(n-1)-1)/8. - Sujay Champati, Sep 05 2020

A374512 Number of ways to tile a 3 X n board with 2 X 2 and 3 X 3 staircase tiles.

Original entry on oeis.org

1, 0, 2, 4, 6, 16, 32, 64, 140, 288, 600, 1264, 2632, 5504, 11520, 24064, 50320, 105216, 219936, 459840, 961376, 2009856, 4201984, 8784896, 18366144, 38397440, 80275840, 167829248, 350873728, 733556736, 1533616128, 3206266880, 6703206656, 14014111744
Offset: 0

Views

Author

Greg Dresden and Shaolun Han, Jul 09 2024

Keywords

Comments

Here are the 2 X 2 and 3 X 3 staircase tiles, both of which can be rotated as desired:
_
| | | |
|_| |___|.
This is a natural generalization of A127864, which counts the number of ways to tile a 2 X n board with 1 X 1 and 2 X 2 staircase tiles.

Examples

			Here is one of the a(6)=32 ways to tile the 3 X 6 board:
   ___________
  | |_  |    _|
  |   |_|  _| |
  |_____|_|___|.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0, 2, 4, 2}, {1, 0, 2, 4}, 50]

Formula

a(n) = 2*a(n-2) + 4*a(n-3) + 2*a(n-4).
a(2*n) = A108485(n).
a(2*n+3) = 4*Sum_{k=0..n} a(2*k)*A002605(n+1-k).
G.f.: 1/(1 - 2*x^2 - 4*x^3 - 2*x^4).
Previous Showing 11-15 of 15 results.