A245728
Numbers k that divide 2^k + 6.
Original entry on oeis.org
1, 2, 10, 1030, 10009593662, 13957196317, 55299492770, 3764656723270
Offset: 1
2^10 + 6 = 1030 is divisible by 10. Thus 10 is a term of this sequence.
-
select(n -> 2 &^ n + 6 mod n = 0, [$1..10^6]); # Robert Israel, Jul 30 2014
-
Select[Range[10^5], Divisible[2^# + 6, #] &] (* Robert Price, Oct 12 2018 *)
-
for(n=1,10^9,if(Mod(2,n)^n==Mod(-6,n),print1(n,", ")))
A334634
Numbers m that divide 2^m + 11.
Original entry on oeis.org
1, 13, 16043199041, 91118493923, 28047837698634913
Offset: 1
Solutions to 2^n == k (mod n):
A296370 (k=3/2),
A187787 (k=1/2),
A296369 (k=-1/2),
A000079 (k=0),
A006521 (k=-1),
A015919 (k=2),
A006517 (k=-2),
A050259 (k=3),
A015940 (k=-3),
A015921 (k=4),
A244673 (k=-4),
A128121 (k=5),
A245318 (k=-5),
A128122 (k=6),
A245728 (k=-6),
A033981 (k=7),
A240941 (k=-7),
A015922 (k=8),
A245319 (k=-8),
A051447 (k=9),
A240942 (k=-9),
A128123 (k=10),
A245594 (k=-10),
A033982 (k=11), this sequence (k=-11),
A128124 (k=12),
A051446 (k=13),
A128125 (k=14),
A033983 (k=15),
A015924 (k=16),
A124974 (k=17),
A128126 (k=18),
A125000 (k=19),
A015925 (k=2^5),
A015926 (k=2^6),
A015927 (k=2^7),
A015929 (k=2^8),
A015931 (k=2^9),
A015932 (k=2^10),
A015935 (k=2^11),
A015937 (k=2^12).
Comments