cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A128352 Numbers k such that (17^k - 5^k)/12 is prime.

Original entry on oeis.org

5, 7, 17, 23, 43, 71, 239, 733, 1097
Offset: 1

Views

Author

Alexander Adamchuk, Feb 27 2007

Keywords

Comments

All terms are primes.
a(10) > 10^5. - Robert Price, Jun 11 2013

Crossrefs

Programs

  • Mathematica
    k=17; Do[p=Prime[n]; f=(k^p-5^p)/(k-5); If[ PrimeQ[f], Print[p] ], {n,1,100}]
  • PARI
    is(n)=isprime((17^n-5^n)/12) \\ Charles R Greathouse IV, Feb 17 2017

A128353 Numbers k such that (18^k - 5^k)/13 is prime.

Original entry on oeis.org

2, 3, 19, 23, 31, 37, 251, 283, 977, 28687, 32993
Offset: 1

Views

Author

Alexander Adamchuk, Feb 27 2007

Keywords

Comments

All terms are primes.
a(12) > 10^5. - Robert Price, Aug 10 2013

Crossrefs

Programs

  • Mathematica
    k=18; Do[p=Prime[n]; f=(k^p-5^p)/(k-5); If[ PrimeQ[f], Print[p] ], {n,1,100}]
  • PARI
    is(n)=isprime((18^n-5^n)/13) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

a(10)-a(11) from Robert Price, Aug 10 2013

A128354 Numbers k such that (19^k - 5^k)/14 is prime.

Original entry on oeis.org

5, 17, 31, 59, 373, 643, 2843, 5209, 85009
Offset: 1

Views

Author

Alexander Adamchuk, Feb 27 2007

Keywords

Comments

All terms are primes.
a(10) > 10^5. - Robert Price, Jul 22 2013

Crossrefs

Programs

  • Mathematica
    k=19; Do[p=Prime[n]; f=(k^p-5^p)/(k-5); If[ PrimeQ[f], Print[p] ], {n,1,100}]
  • PARI
    is(n)=isprime((19^n-5^n)/14) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

a(7)-a(9) from Robert Price, Jul 22 2013

A128349 Numbers k such that (13^k - 5^k)/8 is prime.

Original entry on oeis.org

5, 19, 71, 197, 659, 22079, 61949
Offset: 1

Views

Author

Alexander Adamchuk, Feb 27 2007

Keywords

Comments

All terms are primes.
a(8) > 10^5. - Robert Price, Mar 05 2013

Crossrefs

Programs

  • Mathematica
    k=13; Do[p=Prime[n]; f=(k^p-5^p)/(k-5); If[ PrimeQ[f], Print[p] ], {n,1,100}]
  • PARI
    is(n)=isprime((13^n-5^n)/8) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

a(6)-a(7) from Robert Price, Mar 05 2013

A128350 Numbers k such that (14^k - 5^k)/9 is prime.

Original entry on oeis.org

2, 151, 673, 709, 2999, 17909, 77213
Offset: 1

Views

Author

Alexander Adamchuk, Feb 27 2007

Keywords

Comments

All terms are primes.
a(8) > 10^5. - Robert Price, Apr 23 2013

Crossrefs

Programs

  • Mathematica
    k=14; Do[p=Prime[n]; f=(k^p-5^p)/(k-5); If[ PrimeQ[f], Print[p] ], {n,1,200}]
  • PARI
    is(n)=isprime((14^n-5^n)/9) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

One more term from Herman Jamke (hermanjamke(AT)fastmail.fm), May 01 2008
a(6) and a(7) from Robert Price, Apr 23 2013

A128351 Numbers k such that (16^k - 5^k)/11 is prime.

Original entry on oeis.org

7, 13, 109, 139, 967, 60013, 97613
Offset: 1

Views

Author

Alexander Adamchuk, Feb 27 2007

Keywords

Comments

All terms are primes.
a(8) > 10^5. - Robert Price, Jul 03 2013

Crossrefs

Programs

  • Mathematica
    k=16; Do[p=Prime[n]; f=(k^p-5^p)/(k-5); If[ PrimeQ[f], Print[p] ], {n,1,100}]
  • PARI
    is(n)=isprime((16^n-5^n)/11) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

a(6)-a(7) from Robert Price, Jul 03 2013

A128338 Numbers k such that (8^k + 5^k)/13 is prime.

Original entry on oeis.org

7, 19, 167, 173, 223, 281, 21647
Offset: 1

Views

Author

Alexander Adamchuk, Feb 27 2007

Keywords

Comments

All terms are primes.
a(8) > 10^5. - Robert Price, Jan 21 2013

Crossrefs

Programs

  • Mathematica
    k=8; Do[p=Prime[n]; f=(k^p+5^p)/(k+5); If[ PrimeQ[f], Print[p] ], {n,1,100}]
  • PARI
    is(n)=isprime((8^n+5^n)/13) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

a(7) from Robert Price, Jan 21 2013

A128343 Numbers k such that (14^k + 5^k)/19 is prime.

Original entry on oeis.org

3, 7, 17, 79, 17477, 19319, 49549
Offset: 1

Views

Author

Alexander Adamchuk, Feb 27 2007

Keywords

Comments

All terms are primes.
a(8) > 10^5. - Robert Price, May 20 2013

Crossrefs

Programs

  • Mathematica
    k=14; Do[p=Prime[n]; f=(k^p+5^p)/(k+5); If[ PrimeQ[f], Print[p] ], {n,1,100}]
  • PARI
    is(n)=isprime((14^n+5^n)/19) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

a(5)-a(7) from Robert Price, May 20 2013

A247093 Triangle read by rows: T(m,n) = smallest odd prime p such that (m^p-n^p)/(m-n) is prime (0

Original entry on oeis.org

3, 3, 3, 0, 0, 3, 3, 5, 13, 3, 3, 0, 0, 0, 5, 5, 3, 3, 5, 3, 3, 3, 0, 3, 0, 19, 0, 7, 0, 3, 0, 0, 3, 0, 3, 7, 19, 0, 3, 0, 0, 0, 31, 0, 3, 17, 5, 3, 3, 5, 3, 5, 7, 5, 3, 3, 0, 0, 0, 3, 0, 3, 0, 0, 0, 3, 5, 3, 7, 5, 5, 3, 7, 3, 3, 251, 3, 17, 3, 0, 5, 0, 151, 0, 0, 0, 59, 0, 5, 0, 3, 3, 5, 0, 1097, 0, 0, 3, 3, 0, 0, 7, 0, 17, 3
Offset: 1

Views

Author

Eric Chen, Nov 18 2014

Keywords

Comments

T(m,n) is 0 if and only if m and n are not coprime or A052409(m) and A052409(n) are not coprime. (The latter has some exceptions, like T(8,1) = 3. In fact, if p is a prime and does not equal to A052410(gcd(A052409(m),A052409(n))), then (m^p-n^p)/(m-n) is composite, so if it is not 0, then it is A052410(gcd(A052409(m),A052409(n))).) - Eric Chen, Nov 26 2014
a(i) = T(m,n) corresponds only to probable primes for (m,n) = {(15,4), (18,1), (19,18), (31,6), (37,22), (37,25), ...} (i={95, 137, 171, 441, 652, 655, ...}). With the exception of these six (m,n), all corresponding primes up to a(663) are definite primes. - Eric Chen, Nov 26 2014
a(n) is currently known up to n = 663, a(664) = T(37, 34) > 10000. - Eric Chen, Jun 01 2015
For n up to 1000, a(n) is currently unknown only for n = 664, 760, and 868. - Eric Chen, Jun 01 2015

Examples

			Read by rows:
m\n        1   2   3   4   5   6   7   8   9   10  11
2          3
3          3   3
4          0   0   3
5          3   5   13  3
6          3   0   0   0   5
7          5   3   3   5   3   3
8          3   0   3   0   19  0   7
9          0   3   0   0   3   0   3   7
10         19  0   3   0   0   0   31  0   3
11         17  5   3   3   5   3   5   7   5   3
12         3   0   0   0   3   0   3   0   0   0   3
etc.
		

Crossrefs

Cf. A128164 (n,1), A125713 (n+1,n), A125954 (2n+1,2), A122478 (2n+1,2n-1).
Cf. A000043 (2,1), A028491 (3,1), A057468 (3,2), A059801 (4,3), A004061 (5,1), A082182 (5,2), A121877 (5,3), A059802 (5,4), A004062 (6,1), A062572 (6,5), A004063 (7,1), A215487 (7,2), A128024 (7,3), A213073 (7,4), A128344 (7,5), A062573 (7,6), A128025 (8,3), A128345 (8,5), A062574 (8,7), A173718 (9,2), A128346 (9,5), A059803 (9,8), A004023 (10,1), A128026 (10,3), A062576 (10,9), A005808 (11,1), A210506 (11,2), A128027 (11,3), A216181 (11,4), A128347 (11,5), A062577 (11,10), A004064 (12,1), A128348 (12,5), A062578 (12,11).

Programs

  • Mathematica
    t1[n_] := Floor[3/2 + Sqrt[2*n]]
    m[n_] := Floor[(-1 + Sqrt[8*n-7])/2]
    t2[n_] := n-m[n]*(m[n]+1)/2
    b[n_] := GCD @@ Last /@ FactorInteger[n]
    is[m_, n_] := GCD[m, n] == 1 && GCD[b[m], b[n]] == 1
    Do[k=2, If[is[t1[n], t2[n]], While[ !PrimeQ[t1[n]^Prime[k] - t2[n]^Prime[k]], k++]; Print[Prime[k]], Print[0]], {n, 1, 663}] (* Eric Chen, Jun 01 2015 *)
  • PARI
    a052409(n) = my(k=ispower(n)); if(k, k, n>1);
    a(m, n) = {if (gcd(m,n) != 1, return (0)); if (gcd(a052409(m), a052409(n)) != 1, return (0)); forprime(p=3,, if (isprime((m^p-n^p)/(m-n)), return (p)););}
    tabl(nn) = {for (m=2, nn, for(n=1, m-1, print1(a(m,n), ", ");); print(););} \\ Michel Marcus, Nov 19 2014
    
  • PARI
    t1(n)=floor(3/2+sqrt(2*n))
    t2(n)=n-binomial(floor(1/2+sqrt(2*n)), 2)
    b(n)=my(k=ispower(n)); if(k, k, n>1)
    a(n)=if(gcd(t1(n),t2(n)) !=1 || gcd(b(t1(n)), b(t2(n))) !=1, 0, forprime(p=3,2^24,if(ispseudoprime((t1(n)^p-t2(n)^p)/(t1(n)-t2(n))), return(p)))) \\ Eric Chen, Jun 01 2015

A273010 Numbers n such that (9^n - 7^n)/2 is prime.

Original entry on oeis.org

3, 5, 7, 4703, 30113, 835391
Offset: 1

Views

Author

Tim Johannes Ohrtmann, May 13 2016

Keywords

Comments

All terms are prime.
The corresponding primes: 193, 21121, 1979713, ...

Crossrefs

Programs

  • Mathematica
    Select[Range[1, 10000], PrimeQ[(9^# - 7^#)/2] &]
  • PARI
    for(n=1,10000, if(isprime((9^n - 7^n)/2), print1(n,", ")))

Extensions

a(6) from Jon Grantham, Jul 29 2023
Previous Showing 11-20 of 20 results.