cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 26 results. Next

A128352 Numbers k such that (17^k - 5^k)/12 is prime.

Original entry on oeis.org

5, 7, 17, 23, 43, 71, 239, 733, 1097
Offset: 1

Views

Author

Alexander Adamchuk, Feb 27 2007

Keywords

Comments

All terms are primes.
a(10) > 10^5. - Robert Price, Jun 11 2013

Crossrefs

Programs

  • Mathematica
    k=17; Do[p=Prime[n]; f=(k^p-5^p)/(k-5); If[ PrimeQ[f], Print[p] ], {n,1,100}]
  • PARI
    is(n)=isprime((17^n-5^n)/12) \\ Charles R Greathouse IV, Feb 17 2017

A128353 Numbers k such that (18^k - 5^k)/13 is prime.

Original entry on oeis.org

2, 3, 19, 23, 31, 37, 251, 283, 977, 28687, 32993
Offset: 1

Views

Author

Alexander Adamchuk, Feb 27 2007

Keywords

Comments

All terms are primes.
a(12) > 10^5. - Robert Price, Aug 10 2013

Crossrefs

Programs

  • Mathematica
    k=18; Do[p=Prime[n]; f=(k^p-5^p)/(k-5); If[ PrimeQ[f], Print[p] ], {n,1,100}]
  • PARI
    is(n)=isprime((18^n-5^n)/13) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

a(10)-a(11) from Robert Price, Aug 10 2013

A128354 Numbers k such that (19^k - 5^k)/14 is prime.

Original entry on oeis.org

5, 17, 31, 59, 373, 643, 2843, 5209, 85009
Offset: 1

Views

Author

Alexander Adamchuk, Feb 27 2007

Keywords

Comments

All terms are primes.
a(10) > 10^5. - Robert Price, Jul 22 2013

Crossrefs

Programs

  • Mathematica
    k=19; Do[p=Prime[n]; f=(k^p-5^p)/(k-5); If[ PrimeQ[f], Print[p] ], {n,1,100}]
  • PARI
    is(n)=isprime((19^n-5^n)/14) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

a(7)-a(9) from Robert Price, Jul 22 2013

A128349 Numbers k such that (13^k - 5^k)/8 is prime.

Original entry on oeis.org

5, 19, 71, 197, 659, 22079, 61949
Offset: 1

Views

Author

Alexander Adamchuk, Feb 27 2007

Keywords

Comments

All terms are primes.
a(8) > 10^5. - Robert Price, Mar 05 2013

Crossrefs

Programs

  • Mathematica
    k=13; Do[p=Prime[n]; f=(k^p-5^p)/(k-5); If[ PrimeQ[f], Print[p] ], {n,1,100}]
  • PARI
    is(n)=isprime((13^n-5^n)/8) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

a(6)-a(7) from Robert Price, Mar 05 2013

A128350 Numbers k such that (14^k - 5^k)/9 is prime.

Original entry on oeis.org

2, 151, 673, 709, 2999, 17909, 77213
Offset: 1

Views

Author

Alexander Adamchuk, Feb 27 2007

Keywords

Comments

All terms are primes.
a(8) > 10^5. - Robert Price, Apr 23 2013

Crossrefs

Programs

  • Mathematica
    k=14; Do[p=Prime[n]; f=(k^p-5^p)/(k-5); If[ PrimeQ[f], Print[p] ], {n,1,200}]
  • PARI
    is(n)=isprime((14^n-5^n)/9) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

One more term from Herman Jamke (hermanjamke(AT)fastmail.fm), May 01 2008
a(6) and a(7) from Robert Price, Apr 23 2013

A128351 Numbers k such that (16^k - 5^k)/11 is prime.

Original entry on oeis.org

7, 13, 109, 139, 967, 60013, 97613
Offset: 1

Views

Author

Alexander Adamchuk, Feb 27 2007

Keywords

Comments

All terms are primes.
a(8) > 10^5. - Robert Price, Jul 03 2013

Crossrefs

Programs

  • Mathematica
    k=16; Do[p=Prime[n]; f=(k^p-5^p)/(k-5); If[ PrimeQ[f], Print[p] ], {n,1,100}]
  • PARI
    is(n)=isprime((16^n-5^n)/11) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

a(6)-a(7) from Robert Price, Jul 03 2013

A128338 Numbers k such that (8^k + 5^k)/13 is prime.

Original entry on oeis.org

7, 19, 167, 173, 223, 281, 21647
Offset: 1

Views

Author

Alexander Adamchuk, Feb 27 2007

Keywords

Comments

All terms are primes.
a(8) > 10^5. - Robert Price, Jan 21 2013

Crossrefs

Programs

  • Mathematica
    k=8; Do[p=Prime[n]; f=(k^p+5^p)/(k+5); If[ PrimeQ[f], Print[p] ], {n,1,100}]
  • PARI
    is(n)=isprime((8^n+5^n)/13) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

a(7) from Robert Price, Jan 21 2013

A128343 Numbers k such that (14^k + 5^k)/19 is prime.

Original entry on oeis.org

3, 7, 17, 79, 17477, 19319, 49549
Offset: 1

Views

Author

Alexander Adamchuk, Feb 27 2007

Keywords

Comments

All terms are primes.
a(8) > 10^5. - Robert Price, May 20 2013

Crossrefs

Programs

  • Mathematica
    k=14; Do[p=Prime[n]; f=(k^p+5^p)/(k+5); If[ PrimeQ[f], Print[p] ], {n,1,100}]
  • PARI
    is(n)=isprime((14^n+5^n)/19) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

a(5)-a(7) from Robert Price, May 20 2013

A273598 Numbers k such that (11^k - 6^k)/5 is prime.

Original entry on oeis.org

2, 3, 11, 163, 191, 269, 1381, 1493, 38453
Offset: 1

Views

Author

Tim Johannes Ohrtmann, May 26 2016

Keywords

Comments

All terms are prime.
The corresponding primes: 17, 223, 56989774711, ...

Crossrefs

Programs

  • Mathematica
    Select[Range[1, 10000], PrimeQ[(11^# - 6^#)/5] &]
  • PARI
    for(n=1, 10000, if(isprime((11^n - 6^n)/5), print1(n, ", ")))

Extensions

a(9) from Michael S. Branicky, Nov 10 2024

A273599 Numbers k such that (11^k - 7^k)/4 is prime.

Original entry on oeis.org

5, 19, 67, 107, 593, 757, 1801, 2243, 2383, 6043, 10181, 11383, 15629
Offset: 1

Views

Author

Tim Johannes Ohrtmann, May 26 2016

Keywords

Comments

All terms are prime.
The corresponding primes: 36061, 15286922888307293287, 1483371444025889427763765389467527889556636442659800720575790059738807, ...
a(14) > 50000. - Michael S. Branicky, Nov 11 2024

Crossrefs

Programs

  • Mathematica
    Select[Range[1, 10000], PrimeQ[(11^# - 7^#)/4] &]
  • PARI
    for(n=1, 10000, if(isprime((11^n - 7^n)/4), print1(n, ", ")))
Previous Showing 11-20 of 26 results. Next