A370315
Number of unlabeled simple graphs with n possibly isolated vertices and up to n edges.
Original entry on oeis.org
1, 1, 2, 4, 9, 20, 54, 146, 436, 1372, 4577, 15971, 58376, 221876, 876012, 3583099, 15159817, 66248609, 298678064, 1387677971, 6637246978, 32648574416, 165002122350, 855937433641, 4553114299140, 24813471826280, 138417885372373, 789683693019999, 4603838061688077
Offset: 0
The a(1) = 1 through a(4) = 9 graph edge sets:
{} {} {} {}
{12} {12} {12}
{12-13} {12-13}
{12-13-23} {12-34}
{12-13-14}
{12-13-23}
{12-13-24}
{12-13-14-23}
{12-13-24-34}
-
brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]}, {i,Length[p]}])], {p,Permutations[Range[Length[Union@@m]]]}]]];
Table[Length[Union[brute /@ Select[Subsets[Subsets[Range[n],{2}]], Length[#]<=n&]]],{n,0,5}]
-
a(n) = if(n<=1, n>=0, polcoef(G(n, O(x*x^n))/(1-x),n)) \\ G(n) defined in A008406. - Andrew Howroyd, Feb 20 2024
A370318
Number of labeled simple graphs with n vertices and the same number of edges as covered vertices, such that the edge set is connected.
Original entry on oeis.org
0, 0, 0, 1, 19, 307, 5237, 99137, 2098946, 49504458, 1291570014, 37002273654, 1156078150969, 39147186978685, 1428799530304243, 55933568895261791, 2338378885159906196, 103995520598384132516, 4903038902046860966220, 244294315694676224001852, 12827355456239840407125363
Offset: 0
The covering case is
A057500, which is also the covering case of
A370317.
A062734 counts connected graphs by edge count.
A143543 counts simple labeled graphs by number of connected components.
-
csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}], Length[Intersection@@s[[#]]]>0&]},If[c=={},s, csm[Sort[Append[Delete[s,List/@c[[1]]], Union@@s[[c[[1]]]]]]]]];
Table[Length[Select[Subsets[Subsets[Range[n], {2}]],Length[#]==Length[Union@@#] && Length[csm[#]]==1&]],{n,0,5}]
-
\\ Compare A370317; use A057500 for efficiency.
a(n)=n!*polcoef(polcoef(exp(x*y + O(x*x^n))*(-x+log(sum(k=0, n, (1 + y + O(y*y^n))^binomial(k, 2)*x^k/k!, O(x*x^n)))), n), n) \\ Andrew Howroyd, Feb 19 2024
A368834
Number of unlabeled simple graphs covering n vertices such that it is possible to choose a different vertex from each edge (choosable).
Original entry on oeis.org
1, 0, 1, 2, 5, 10, 27, 62, 165, 423, 1140, 3060, 8427, 23218, 64782, 181370, 511004, 1444285, 4097996, 11656644, 33243265, 94992847, 271953126, 779790166, 2239187466, 6438039076, 18532004323, 53400606823, 154024168401, 444646510812, 1284682242777
Offset: 0
Representatives of the a(2) = 1 through a(5) = 10 simple graphs:
{12} {12}{13} {12}{34} {12}{13}{45}
{12}{13}{23} {12}{13}{14} {12}{13}{14}{15}
{12}{13}{24} {12}{13}{14}{25}
{12}{13}{14}{23} {12}{13}{23}{45}
{12}{13}{24}{34} {12}{13}{24}{35}
{12}{13}{14}{15}{23}
{12}{13}{14}{23}{25}
{12}{13}{14}{23}{45}
{12}{13}{14}{25}{35}
{12}{13}{24}{35}{45}
The complement is counted by
A369202.
A054548 counts graphs covering n vertices with k edges, with loops
A369199.
-
brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]},{i,Length[p]}])], {p,Permutations[Range[Length[Union@@m]]]}]]];
Table[Length[Union[brute /@ Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n] && Length[Select[Tuples[#],UnsameQ@@#&]]!=0&]]],{n,0,5}]
A217756
Triangular array read by rows: T(n,k) is the number of simple labeled graphs on n nodes with exactly k components where each component has at most one cycle; n>=1, 1<=k<=n.
Original entry on oeis.org
1, 1, 1, 4, 3, 1, 31, 19, 6, 1, 347, 195, 55, 10, 1, 4956, 2707, 720, 125, 15, 1, 85102, 46319, 12082, 2030, 245, 21, 1, 1698712, 930947, 242774, 40397, 4830, 434, 28, 1, 38562309, 21372678, 5620177, 938826, 112287, 10206, 714, 36, 1
Offset: 1
... o-o ........... o o ........... o o ..........
... ........... | ........... |\ ..........
... o-o ........... o-o ........... o-o ..........
T(4,2) = 19 because the above graphs on 4 nodes have 2 components with at most one cycle. They have respectively 3 + 12 + 4 = 19 labelings.
1;
1, 1;
4, 3, 1;
31, 19, 6, 1;
347, 195, 55, 10, 1;
4956, 2707, 720, 125, 15, 1;
85102, 46319, 12082, 2030, 245, 21, 1;
- V. F. Kolchin, Random Graphs. Encyclopedia of Mathematics and Its Applications 53. Cambridge Univ. Press, Cambridge, 1999, pp 30-31.
-
nn=10;t=Sum[n^(n-1)x^n/n!,{n,1,nn}];f[list_]:=Select[list,#>0&];Map[f,Drop[Range[0,nn]!CoefficientList[Series[Exp[y(t/2-3t^2/4)]/(1-t)^(y/2),{x,0,nn}],{x,y}],1]]//Grid
-
\p 1000 \\ See Peter Luschny formula in A129271.
f(p) = round(((p-1) * exp(p) * incgam(p-1,p) + p^(p-2) * (3-p)) /2);
T(n,k) = { my(S=0, D, p, c); forpart(a = n, D = Set(a);
S += prod(j=1,#D, p=D[j]; c=#select(x-> x==p,Vec(a)); (f(p)/p!)^c /c!)
, [1, n], [k, k]); n! * S }; \\ Washington Bomfim, Jun 16 2020
-
# uses[bell_matrix from A264428]
# Adds a column 1,0,0,0, ... at the left side of the triangle.
bell_matrix(lambda n: A129271(n+1), 10) # Peter Luschny, Jan 18 2016
Comments