A129331 Second column of PE^4.
0, 1, 8, 60, 464, 3780, 32568, 296492, 2845088, 28695060, 303334920, 3351877628, 38622668400, 463036981732, 5764038605528, 74365952622540, 992720923710272, 13690497077256628, 194777994524434344, 2855149354656290716
Offset: 0
Crossrefs
Programs
-
Maple
A056857 := proc(n,c) combinat[bell](n-1-c)*binomial(n-1,c) ; end: A078937 := proc(n,c) add( A056857(n,k)*A056857(k+1,c),k=0..n) ; end: A078938 := proc(n,c) add( A078937(n,k)*A056857(k+1,c),k=0..n) ; end: A078939 := proc(n,c) add( A078938(n,k)*A056857(k+1,c),k=0..n) ; end: A129331 := proc(n) A078939(n+1,1) ; end: seq(A129331(n),n=0..25) ; # R. J. Mathar, May 30 2008
-
Mathematica
Table[Sum[BellB[n, 4], {i, 0, n}], {n, -1, 18}] (* Zerinvary Lajos, Jul 16 2009 *)
Formula
PE=exp(matpascal(5))/exp(1); A = PE^4; a(n)= A[ n,2 ] with exact integer arithmetic: PE=exp(matpascal(5)-matid(6)); A = PE^4; a(n)=A[ n,2]
Extensions
More terms from R. J. Mathar, May 30 2008
Comments