cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A129331 Second column of PE^4.

Original entry on oeis.org

0, 1, 8, 60, 464, 3780, 32568, 296492, 2845088, 28695060, 303334920, 3351877628, 38622668400, 463036981732, 5764038605528, 74365952622540, 992720923710272, 13690497077256628, 194777994524434344, 2855149354656290716
Offset: 0

Views

Author

Gottfried Helms, Apr 08 2007

Keywords

Comments

Base matrix is in A011971; second power is in A078937; third power is in A078938; fourth power is in A078939.

Crossrefs

Programs

Formula

PE=exp(matpascal(5))/exp(1); A = PE^4; a(n)= A[ n,2 ] with exact integer arithmetic: PE=exp(matpascal(5)-matid(6)); A = PE^4; a(n)=A[ n,2]

Extensions

More terms from R. J. Mathar, May 30 2008

A129332 Third column of PE^4.

Original entry on oeis.org

0, 0, 1, 12, 120, 1160, 11340, 113988, 1185968, 12802896, 143475300, 1668342060, 20111265768, 251047344600, 3241258872124, 43230289541460, 594927620980320, 8438127851537312, 123214473695309652, 1850390947982126268
Offset: 0

Views

Author

Gottfried Helms, Apr 08 2007

Keywords

Comments

Base matrix is in A011971; second power is in A078937; third power is in A078938; fourth power is in A078939.

Crossrefs

Programs

Formula

PE=exp(matpascal(5))/exp(1); A = PE^4; a(n)= A[ n,3 ] with exact integer arithmetic: PE=exp(matpascal(5)-matid(6)); A = PE^4; a(n)=A[ n,3]

Extensions

More terms from R. J. Mathar, May 30 2008

A129333 Fourth column of PE^4.

Original entry on oeis.org

0, 0, 0, 1, 16, 200, 2320, 26460, 303968, 3557904, 42676320, 526076100, 6673368240, 87148818328, 1171554274800, 16206294360620, 230561544221120, 3371256518888480, 50628767109223872, 780358333403627796
Offset: 0

Views

Author

Gottfried Helms, Apr 08 2007

Keywords

Comments

Base matrix is in A011971; second power is in A078937; third power is in A078938; fourth power is in A078939.

Crossrefs

Programs

Formula

PE=exp(matpascal(5))/exp(1); A = PE^4; a(n)= A[ n,4 ] with exact integer arithmetic: PE=exp(matpascal(5)-matid(6)); A = PE^4; a(n)=A[ n,4]

Extensions

More terms from R. J. Mathar, May 30 2008
Previous Showing 11-13 of 13 results.