cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-25 of 25 results.

A382682 Number of integer partitions of n with origin-to-boundary graph-distance equal to 3.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 4, 8, 15, 23, 32, 43, 54, 67, 82, 97, 114, 133, 152, 173, 196, 219, 244, 271, 298, 327, 358, 389, 422, 457, 492, 529, 568, 607, 648, 691, 734, 779, 826, 873, 922, 973, 1024, 1077, 1132, 1187, 1244, 1303, 1362, 1423, 1486, 1549, 1614, 1681, 1748, 1817, 1888, 1959
Offset: 0

Views

Author

N Guru Sharan, Jun 03 2025

Keywords

Comments

Also the number of partitions of n with a fixed Durfee triangle of size 3.
Column k=3 of the triangle in A325188.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(q^6 + 2 q^7 + q^8 + 2 q^9 - q^10 - q^12 - q^13 + q^14)/((1 - q)^3 (1 + q + q^2)), {q, 0, 200}],q]

Formula

G.f.: q^6*(1 + 2*q + q^2 + 2*q^3 - q^4 - q^6 - q^7 + q^8)/((1 - q)^3*(1 + q + q^2)).
9*a(n) = 2*A099837(n+3)+6*n^2+59-45*n for n>9. - R. J. Mathar, Jun 24 2025

A262067 a(n) = n^n - (n-2)^n.

Original entry on oeis.org

2, 4, 26, 240, 2882, 42560, 745418, 15097600, 347066882, 8926258176, 253930611002, 7916100448256, 268352394448322, 9828088361009152, 386707997366768618, 16268790735900180480, 728714136550643404802, 34624041592426892361728
Offset: 1

Views

Author

Altug Alkan, Sep 10 2015

Keywords

Comments

Inspired by multi-dimensional cubes: For n>1, the number of lattice points on the surface of a k-dimensional cube with side-length n is f(n,k) = n^k - (n-2)^k. a(n) = f(n,n).

Examples

			For n = 2, a(n) = n^n - (n-2)^n = 2^2 - (2-2)^2 = 4.
		

Crossrefs

For sequences with "Number of points on surface of k-dimensional cube," cf. A130130 (k=1), A008574 (k=2, shifted), A005897 (k=3), A008511 (k=4), A008512 (k=5), A008513 (k=6).

Programs

Formula

a(n) = A000312(n) - A008788(n-2).

A384562 Number of integer partitions of n with origin-to-boundary graph-distance equal to 4.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 5, 12, 24, 42, 66, 98, 135, 181, 233, 298, 367, 452, 543, 651, 765, 899, 1039, 1202, 1371, 1564, 1765, 1993, 2227, 2491, 2763, 3066, 3377, 3722, 4075, 4465, 4863, 5299, 5745, 6232, 6727, 7266, 7815, 8409, 9013, 9665, 10327, 11040, 11763, 12538, 13325, 14167, 15019, 15929, 16851, 17832, 18825, 19880, 20947, 22079, 23223, 24433, 25657, 26950
Offset: 0

Views

Author

N Guru Sharan, Jun 03 2025

Keywords

Comments

This also counts the number of partitions of n with a fixed Durfee triangle of size 4. This is the column k=4 of the triangle in A325188.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(q^10 (1 + 4q + 6 q^2 + 7 q^3 + 6 q^4 + 2 q^5 - 5 q^7 - 5 q^8 - 5 q^9 + q^11 + 3 q^12 + 2 q^13 - q^16))/((1 - q)(1 - q^2)(1 - q^3)(1 - q^4)), {q, 0, 50}], q]

Formula

G.f.: q^10*(1 + 4*q + 6*q^2 + 7*q^3 + 6*q^4 + 2*q^5 - 5*q^7 - 5*q^8 - 5*q^9 + q^11 + 3*q^12 + 2*q^13 - q^16)/((1 - q)*(1 - q^2)*(1 - q^3)*(1 - q^4)).

A373005 Array read by ascending antidiagonals: A(n,k) is the maximum possible cardinality of a set of points of diameter at most k-1 in {0,1}^n.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 1, 2, 1, 0, 1, 2, 2, 0, 0, 1, 2, 3, 2, 1, 0, 1, 2, 4, 4, 2, 2, 0, 1, 2, 5, 6, 4, 2, 1, 0, 1, 2, 6, 8, 7, 4, 2, 0, 0, 1, 2, 7, 10, 11, 8, 4, 2, 1, 0, 1, 2, 8, 12, 16, 14, 8, 4, 2, 2, 0, 1, 2, 9, 14, 22, 22, 15, 8, 4, 2, 1, 0, 1, 2, 10, 16, 29, 32, 26, 16, 8, 4, 2, 0
Offset: 0

Views

Author

Stefano Spezia, May 19 2024

Keywords

Comments

A(n,k) is also the size of the Hamming ball in {0,1}^n of radius (k-1)/2 if k is odd and of the union of two Hamming balls in {0,1}^n of radius k/2-1 whose centers are of Hamming distance 1 if k is even.

Examples

			The array begins:
  1, 1, 2, 1,  0,  1,  2,  1, ...
  0, 1, 2, 2,  2,  2,  2,  2, ...
  0, 1, 2, 3,  4,  4,  4,  4, ...
  0, 1, 2, 4,  6,  7,  8,  8, ...
  0, 1, 2, 5,  8, 11, 14, 15, ...
  0, 1, 2, 6, 10, 16, 22, 26, ...
  0, 1, 2, 7, 12, 22, 32, 42, ...
  0, 1, 2, 8, 14, 29, 44, 64, ...
  ...
		

Crossrefs

Cf. A000007 (k=0), A000012 (k=1), A000124 (k=5), A000125 (k=7), A005843 (k=4), A006261 (k=11), A007395 (k=2), A008859 (k=13), A011782 (main diagonal), A014206, A046127 (k=8), A059173, A059174, A130130 (n=1), A158411 (n=2), A373006 (antidiagonal sums).

Programs

  • Mathematica
    A[n_,k_]:=If[OddQ[k],Sum[Binomial[n,i],{i,0,(k-1)/2}], Binomial[n-1,k/2-1]+Sum[Binomial[n,i],{i,0,k/2-1}]]; Table[A[n-k,k],{n,0,12},{k,0,n}]//Flatten

Formula

A(n,k) = Sum_{i=0..(k-1)/2} binomial(n,i) if k is odd;
A(n,k) = binomial(n-1,k/2-1) + Sum_{i=0..k/2-1} binomial(n,i) if k is even.
A(n,3) = n+1.
A(n,6) = A014206(n-1).
A(n,9) = A000127(n+1).
A(n,10) = A059173(n) for n > 0.
A(n,12) = A059174(n) for n > 0.
A(0,k) = A007877(k) for k > 0.

A322505 Factorial expansion of 1/sqrt(2) = Sum_{n>=1} a(n)/n!.

Original entry on oeis.org

0, 1, 1, 0, 4, 5, 0, 6, 4, 9, 0, 11, 7, 3, 11, 10, 2, 2, 5, 16, 11, 3, 7, 18, 16, 19, 11, 12, 21, 19, 22, 5, 31, 21, 25, 30, 20, 6, 5, 21, 17, 41, 36, 14, 28, 13, 45, 16, 0, 33, 1, 2, 41, 1, 28, 43, 9, 15, 16, 28, 22, 19, 22, 13, 34, 61, 38, 40, 56, 44, 69, 25, 42, 44, 34, 73, 71, 42, 17
Offset: 1

Views

Author

G. C. Greubel, Dec 12 2018

Keywords

Examples

			1/sqrt(2) = 0 + 1/2! + 1/3! + 0/4! + 4/5! + 5/6! + 0/7! + 6/8! + ...
		

Crossrefs

Cf. A010503 (decimal expansion), A130130 (continued fraction).
Cf. A009949 (sqrt(2)).

Programs

  • Magma
    SetDefaultRealField(RealField(250));  [Floor(1/Sqrt(2))] cat [Floor(Factorial(n)/Sqrt(2)) - n*Floor(Factorial((n-1))/Sqrt(2)) : n in [2..80]];
    
  • Mathematica
    With[{b = 1/Sqrt[2]}, Table[If[n == 1, Floor[b], Floor[n!*b] - n*Floor[(n - 1)!*b]], {n, 1, 100}]] (* G. C. Greubel, Dec 12 2018 *)
  • PARI
    default(realprecision, 250); b = 1/sqrt(2); for(n=1, 80, print1(if(n==1, floor(b), floor(n!*b) - n*floor((n-1)!*b)), ", "))
    
  • Sage
    b=1/sqrt(2);
    def a(n):
        if (n==1): return floor(b)
        else: return expand(floor(factorial(n)*b) -n*floor(factorial(n-1)*b))
    [a(n) for n in (1..80)]
Previous Showing 21-25 of 25 results.