cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A195121 a(n) = 2*n - floor(n/r), where r = (1 + sqrt(5))/2 (the golden ratio).

Original entry on oeis.org

0, 2, 3, 5, 6, 7, 9, 10, 12, 13, 14, 16, 17, 18, 20, 21, 23, 24, 25, 27, 28, 30, 31, 32, 34, 35, 36, 38, 39, 41, 42, 43, 45, 46, 47, 49, 50, 52, 53, 54, 56, 57, 59, 60, 61, 63, 64, 65, 67, 68, 70, 71, 72, 74, 75, 77, 78, 79, 81, 82, 83, 85, 86, 88, 89, 90, 92, 93, 94
Offset: 0

Views

Author

Clark Kimberling, Sep 09 2011

Keywords

Comments

Apparently, the nonzero terms are the numbers whose maximal Lucas representation (A130311) ends with 1. - Amiram Eldar, Jan 21 2023

Crossrefs

Programs

  • Magma
    [3*n-Floor(n*(1+Sqrt(5))/2): n in [0..70]]; // Vincenzo Librandi, Sep 12 2011
  • Mathematica
    Table[2n-Floor[n/GoldenRatio],{n,0,70}] (* Harvey P. Dale, Feb 11 2018 *)

Formula

a(n) = 3*n - floor(n*r), where r = (1 + sqrt(5))/2.

A351718 Numbers whose binary and maximal Lucas representations are both palindromic.

Original entry on oeis.org

0, 3, 5, 17, 85, 107, 219, 1161, 1365, 1619, 2047, 4097, 6141, 19801, 25027, 68961, 91213, 134337, 1540157, 1804859, 11877549, 37696497, 44092437, 142710801, 548269377, 3387848595, 4073444175, 8226780335, 31029923047, 64662095631, 67947722943, 126590440407, 2145176968607
Offset: 1

Views

Author

Amiram Eldar, Feb 17 2022

Keywords

Examples

			The first 10 terms are:
   n   a(n)  A007088(a(n))    A130311(a(n))
   ----------------------------------------
   1     0               0                0
   2     3              11               11
   3     5             101              101
   4    17           10001            11111
   5    85         1010101        101101101
   6   107         1101011        111010111
   7   219        11011011      10110101101
   8  1161     10010001001   11011111111011
   9  1365     10101010101  101010101010101
  10  1619     11001010011  101111010111101
		

Crossrefs

Intersection of A006995 and A351717.

Programs

  • Mathematica
    lazy = Select[IntegerDigits[Range[10^6], 2], SequenceCount[#, {0, 0}] == 0 &]; t = Total[# * Reverse @ LucasL[Range[0, Length[#] - 1]]] & /@ lazy; s = FromDigits /@ lazy[[TakeWhile[Flatten[FirstPosition[t, #] & /@ Range[Max[t]]], NumberQ]]]; Join[{0}, Select[Position[s, _?PalindromeQ] // Flatten, PalindromeQ[IntegerDigits[#, 2]] &]]
Previous Showing 11-12 of 12 results.