A173076
Triangle T(n, k, q) = binomial(n, k) - 1 + q^(floor(n/2))*binomial(n-2, k-1) with T(n, 0, q) = T(n, n, q) = 1 and q = 2, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 4, 4, 1, 1, 7, 13, 7, 1, 1, 8, 21, 21, 8, 1, 1, 13, 46, 67, 46, 13, 1, 1, 14, 60, 114, 114, 60, 14, 1, 1, 23, 123, 295, 389, 295, 123, 23, 1, 1, 24, 147, 419, 685, 685, 419, 147, 24, 1, 1, 41, 300, 1015, 2001, 2491, 2001, 1015, 300, 41, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 3, 1;
1, 4, 4, 1;
1, 7, 13, 7, 1;
1, 8, 21, 21, 8, 1;
1, 13, 46, 67, 46, 13, 1;
1, 14, 60, 114, 114, 60, 14, 1;
1, 23, 123, 295, 389, 295, 123, 23, 1;
1, 24, 147, 419, 685, 685, 419, 147, 24, 1;
1, 41, 300, 1015, 2001, 2491, 2001, 1015, 300, 41, 1;
-
T:= func< n,k,q | k eq 0 or k eq n select 1 else Binomial(n,k) + q^(Floor(n/2))*Binomial(n-2,k-1) -1 >;
[T(n,k,2): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 09 2021
-
T[n_, k_, q_]:= If[k==0 || k==n, 1, Binomial[n, k] - 1 + q^(Floor[n/2])*Binomial[n-2, k-1]];
Table[T[n, k, 2], {n,0,10}, {k,0,n}]//Flatten
-
def T(n,k,q): return 1 if (k==0 or k==n) else binomial(n,k) + q^(n//2)*binomial(n-2,k-1) -1
flatten([[T(n,k,1) for k in (0..n)] for n in (0..12)])
A173077
Triangle T(n, k, q) = binomial(n, k) - 1 + q^floor(n/2)*binomial(n-2, k-1) with T(n, 0, q) = T(n, n, q) = 1 and q = 3, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 4, 1, 1, 5, 5, 1, 1, 12, 23, 12, 1, 1, 13, 36, 36, 13, 1, 1, 32, 122, 181, 122, 32, 1, 1, 33, 155, 304, 304, 155, 33, 1, 1, 88, 513, 1270, 1689, 1270, 513, 88, 1, 1, 89, 602, 1784, 2960, 2960, 1784, 602, 89, 1, 1, 252, 1988, 6923, 13817, 17261, 13817, 6923, 1988, 252, 1
Offset: 0
Triangle starts:
1;
1, 1;
1, 4, 1;
1, 5, 5, 1;
1, 12, 23, 12, 1;
1, 13, 36, 36, 13, 1;
1, 32, 122, 181, 122, 32, 1;
1, 33, 155, 304, 304, 155, 33, 1;
1, 88, 513, 1270, 1689, 1270, 513, 88, 1;
1, 89, 602, 1784, 2960, 2960, 1784, 602, 89, 1;
1, 252, 1988, 6923, 13817, 17261, 13817, 6923, 1988, 252, 1;
...
Row sums: 1, 2, 6, 12, 49, 100, 491, 986, 5433, 10872, 63223, ...
-
T:= func< n,k,q | k eq 0 or k eq n select 1 else Binomial(n,k) + q^(Floor(n/2))*Binomial(n-2,k-1) -1 >;
[T(n,k,3): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 09 2021
-
T[n_, k_]:= If[k==0 || k==n, 1, Binomial[n, k] - 1 + 3^Floor[n/2] Binomial[n-2, k- 1]];
Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten
-
def T(n,k,q): return 1 if (k==0 or k==n) else binomial(n,k) + q^(n//2)*binomial(n-2,k-1) -1
flatten([[T(n,k,3) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jul 09 2021
A173043
Triangle T(n, k, q) = binomial(n, k) - 1 + q^(n*binomial(n-2, k-1)) with T(n, 0, q) = T(n, n, q) = 1 and q = 2, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 5, 1, 1, 10, 10, 1, 1, 19, 261, 19, 1, 1, 36, 32777, 32777, 36, 1, 1, 69, 16777230, 68719476755, 16777230, 69, 1, 1, 134, 34359738388, 1180591620717411303458, 1180591620717411303458, 34359738388, 134, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 5, 1;
1, 10, 10, 1;
1, 19, 261, 19, 1;
1, 36, 32777, 32777, 36, 1;
1, 69, 16777230, 68719476755, 16777230, 69, 1;
-
T:= func< n,k,q | k eq 0 or k eq n select 1 else Binomial(n,k) -1 +q^(n*Binomial(n-2, k-1)) >;
[T(n,k,2): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 19 2021
-
T[n_, k_, q_]:= If[k==0 || k==n, 1, Binomial[n, k] - 1 + q^(n*Binomial[n-2, k-1])];
Table[t[n, k, 2], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Feb 19 2021 *)
-
def T(n,k,q):
if (k==0 or k==n): return 1
else: return binomial(n,k) -1 +q^(n*binomial(n-2, k-1))
flatten([[T(n,k,2) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 19 2021
A173045
Triangle T(n, k, q) = binomial(n, k) - 1 + q^(n*binomial(n-2, k-1)) with T(n, 0, q) = T(n, n, q) = 1 and q = 3, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 10, 1, 1, 29, 29, 1, 1, 84, 6566, 84, 1, 1, 247, 14348916, 14348916, 247, 1, 1, 734, 282429536495, 150094635296999140, 282429536495, 734, 1, 1, 2193, 50031545098999727, 2503155504993241601315571986085883, 2503155504993241601315571986085883, 50031545098999727, 2193, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 10, 1;
1, 29, 29, 1;
1, 84, 6566, 84, 1;
1, 247, 14348916, 14348916, 247, 1;
1, 734, 282429536495, 150094635296999140, 282429536495, 734, 1;
-
T:= func< n,k,q | k eq 0 or k eq n select 1 else Binomial(n,k) -1 +q^(n*Binomial(n-2, k-1)) >;
[T(n,k,3): k in [0..n], n in [0..9]]; // G. C. Greubel, Feb 19 2021
-
T[n_, k_, q_]:= If[k==0 || k==n, 1, Binomial[n, k] - 1 + q^(n*Binomial[n-2, k-1])];
Table[t[n, k, 3], {n,0,9}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Feb 19 2021 *)
-
def T(n,k,q):
if (k==0 or k==n): return 1
else: return binomial(n,k) -1 +q^(n*binomial(n-2, k-1))
flatten([[T(n,k,3) for k in (0..n)] for n in (0..9)]) # G. C. Greubel, Feb 19 2021