cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-24 of 24 results.

A350499 Unsigned coefficients of free moment partition polynomials determining the free cumulants from the free moments of free probability theory. Irregular triangle with row lengths given by A000041, n >= 1.

Original entry on oeis.org

1, 1, 1, 1, 3, 2, 1, 4, 2, 10, 5, 1, 5, 5, 15, 15, 35, 14, 1, 6, 6, 3, 21, 42, 7, 56, 84, 126, 42, 1, 7, 7, 7, 28, 56, 28, 28, 84, 252, 84, 210, 420, 462, 132, 1, 8, 8, 8, 4, 36, 72, 72, 36, 36, 120, 360, 180, 360, 30, 330, 1320, 660, 792, 1980, 1716, 429
Offset: 1

Views

Author

Tom Copeland, Jan 01 2022

Keywords

Comments

Coefficients are listed in Abramowitz and Stegun order (A036036).
Irregular triangular matrix of the unsigned coefficients of the free moment partition polynomials of free probability theory, for a single variable, that give the free formal cumulants given the free formal moments. This set of partition polynomials together with those of A134264 are the counterparts to the exp-log relations for the classical formal moments and cumulants associated with A036040 and A127671.
Associations with a compositional inverse pair of Laurent series, Kac-Schwarz operators of 2-D quantum theory, Virasoro / Witt / Heisenberg group actions, and KP and KdV integrable hierarchies are noted in references supplied in the MathOverflow link as well as a geometric combinatorial model based upon noncrossing partitions.

Examples

			Triangle begins:
  1;
  1, 1;
  1, 3, 2;
  1, 4, 2, 10,  5;
  1, 5, 5, 15, 15, 35, 14;
  ...
___________
The first few free cumulants in terms of the free moments are
  c_1 = m_1
  c_2 = m_2 - m_1^2
  c_3 = m_3 - 3 m_2 m_1 + 2 m_1^3
  c_4 = m_4 - 2 m_2^2 - 4m_3 m_1 + 10 m_2 m_1^2 - 5 m_1^4
  c_5 = m_5 - 5 m_2  m_3 - 5  m_4 m_1 + 15  m_2^2 m_1 + 15 m_3 m_1^2 - 35 m_2 m_1^3 + 14 m_1^5
___________
Conversely, from A134264, these free moments in terms of the free cumulants are
  m_1 = c_1
  m_2 = c_2 + c_1^2
  m_3 = c_3 + 3 c_2 c_1 + c_1^3
  m_4 = c_4 + + 2 c_2^2 + 4 c_3 c_1 + 6 c_2 c_1^2 + c_1^4
  m_5 = c_5 + 5 c_2 c_3 + 5 c_4 c_1 + 10 c_2^2 c_1 + 10 c_3 c_1^2  + 10 c_2 c_1^3 + c_1^5
___________
		

Crossrefs

Programs

  • PARI
    mv(n)={eval(Str("'m",n))}
    Trm(m,v)={my(S=Set(v)); for(i=1, #S, my(x=S[i]); m=polcoef(m, #select(y->y==x, v), mv(x))); m}
    Q(n)={polcoef(-x/serreverse(x*(1 + sum(k=1, n, -x^k*mv(k), O(x*x^n)))), n)}
    row(n)={my(q=Q(n)); [Trm(q,Vec(v)) | v<-partitions(n)]}
    { for(n=1, 7, print(row(n))) } \\ Andrew Howroyd, Feb 01 2022
    
  • PARI
    C(v)={my(n=vecsum(v), S=Set(v)); (n+#v-2)!/(n-1)!/prod(i=1, #S, my(x=S[i]); (#select(y->y==x, v))!)}
    row(n)=[C(Vec(p)) | p<-partitions(n)]
    { for(n=1, 7, print(row(n))) } \\ Andrew Howroyd, Feb 01 2022

Formula

O.g.f.: C(x) = 1 + c_1 x + c_2 x^2 + ... = x / (x + m_1 x^2 + m_2 x^3 + m_3 x^4 + ...)^(-1) = x / M^(-1)(x), the shifted reciprocal of the compositional inverse of a power series M(x) = x + m_1 x^2 + m_2 x^3 + ..., the o.g.f. of the free moments m_n in free probability theory.
Row sums: big Schroeder numbers A006318.
Refinement of A060693 and A088617, i.e., by letting m_n = -t and removing all resulting signs, the elements of these two lower triangular matrices are generated.
The coefficients of the highest order terms in m_1^n of the free moment partition polynomials are the signed Catalan numbers A000108.
Taking the derivative with respect to the indeterminate m_1 generates the Lagrange inversion partition polynomials, with shifted indices, of A133437 and A111785 with an overall scale factor. These Lagrange inversion polynomials are the refined Euler characteristic polynomials of the associahedra. E.g.,
D_{m_1} c_5 = 5 (- m_4 + 3 m_2^2 + 6 m_3 m_1 - 21 m_2 m_1^2 + 14 m_1^4). An analogous differential formula that applies to the classical formal cumulants in relation to the permutahedra is stated in my 2012 comment in A127671.
The o.g.f. satisfies the partial differential equations D_{m_1} (x / C(x)) = -(1/3) D_x (x / C(x))^3 and D_{m_1} (C(x) / x) = D_x (x / C(x)), where D_{m_1} and D_x are the partial derivatives with respect to m_1 and x.
More generally, D_{m_n} (x / C(x)) = -(1/(n+2)) D_x (x / C(x))^{n+2), equivalent to D_{m_n} M^(-1)(x) = -(1/(n+2)) D_x (M^(-1)(x))^{n+2). Equations of this type are found in Zhou (see eqn. 44 on p. 11), characterizing the KdV hierarchy. These differential equations can be transformed into the inviscid Burgers-Hopf partial differential equation (see, e.g., A133437, A086810, A001764, A002293, A133932, A134685, and A276850).
The formal free cumulants when identified as the indeterminates of the noncrossing Lagrange inversion partition polynomials NCP_n(c_1,c_2,...,c_n) = m_n of A134264 (as in the example section) satisfy the partial differential equations D_{m_k} NCP_n(c_1, ..., c_n) = d(m_n)/dm_k = delta_{n-k}, where delta_{n} is the Kronecker delta which is zero for all integers n other than n = 0, for which it evaluates as unity. This provides a recursion method for determining the partial derivatives dc_n/dm_k from the partial derivatives dc_p/dm_k and cumulants c_p with k <= p < n. For example, dc_k/dm_j = 0 for j > k and dc_k/dm_k = 1, so dm_3/dm_2 = 0 = D_{m_2} (c_3 + 3 c_2 c_1 + c_1^3) = dc_3/dm_2 + 3 c_1 dc_2/dm_2 = dc_3/dm_2 + 3 c_1 , implying dc_3/dm_2 = -3 c_1 = -3 m_1.
T(n,k) = (n+j-2)!/((n-1)!*Product_{i>=1} s_i!), where (1*s_1 + 2*s_2 + ... = n) is the k-th partition of n and j = s_1 + s_2 + ... is the number of parts. - Andrew Howroyd, Feb 01 2022
Conjecture: free cumulants in terms of the free moments are R(n,1) for n > 0 where R(n,k) = R(n-1,k+1) - Sum_{j=1..n-1} R(j,k)*R(n-j,1) for n > 1, k > 0 with R(1,k) = m_k for k > 0. - Mikhail Kurkov, Mar 30 2025

Extensions

Terms a(19) and beyond from Andrew Howroyd, Feb 01 2022

A253722 Triangle read by rows: coefficients of the partition polynomials for the reciprocal of the derivative of a power series, g(x)= 1/h'(x).

Original entry on oeis.org

1, -2, 4, -3, -8, 12, -4, 16, -36, 9, 16, -5, -32, 96, -54, -48, 24, 20, -6, 64, -240, 216, 128, -27, -144, -60, 16, 30, 24, -7, -128, 576, -720, -320, 216, 576, 160, -108, -96, -180, -72, 40, 36, 28, -8
Offset: 0

Views

Author

Tom Copeland, May 02 2015

Keywords

Comments

This entry contains the integer coefficients of the partition polynomials P(n;h_1,h_2,...,h_(n+1)) for the reciprocal g(x) of the derivative of a power series in terms of the coefficients of the power series; i.e., g(x) = 1/[dh(x)/dx] = 1/[h_1 + 2*h_2 * x + 3*h_3 * x^2 + ...] = sum[n>=0, (h_1)^(-(n+1)) * P(n;h_1,...,h_(n+1)) * x^n].
This is a signed refinement of reversed A181289. See A145271, A133437, and A133314 for relations to compositional and multiplicative inversions.

Examples

			Let h(x) = h_0 + h_1 * x + h_2 * x^2 + ... . Then g(x) = 1/h'(x) = 1/[h_1 + 2*h_2 * x + 3*h_3 * x^2 + ...] = (h_1)^(-1) P(0;h_1) + (h_1)^(-2) * P(1;h_1,h_2) * x + (h_1)^(-3) * P(2;h_1,h_2,h_3) * x^2 + ... , and, with h_n = (n'), the first few partition polynomials are
P(0;..)=  1
P(1;..)= -2 (2')
P(2;..)=  4 (2')^2 - 3 (3')(1')
P(3;..)= -8 (2')^3 + 12 (3')(2')(1') - 4 (4')(1')^2
P(4;..)= 16 (2')^4 - 36 (2')^2(3')(1') + [9 (3')^2 + 16 (4')(2')](1')^2 - 5 (5')(1')^3
P(5;..)= -32 (2')^5 + 96 (2')^3(3')(1') + [-54 (3')^2(2') - 48 (4')(2')^2](1')^2 + [24 (3')(4') + 20 (5')(2')](1')^3 - 6 (6')(1')^4
P(6;..)= 64 (2')^6 - 240 (2')^4(3')(1') + [216 (3')^2(2') + 128 (4')(2')^3](1')^2 - [27 (3')^3 + 144 (4')(3')(2') + 60 (5')(2')^2](1')^3 + [16 (4')^2 + 30 (5')(3') + 24 (6')(2')](1')^4 - 7 (7')(1')^5
		

Crossrefs

Programs

  • Mathematica
    rows[n_] := {{1}}~Join~With[{s = 1/(1 + Sum[(k+1) u[k] x^k, {k, n}] + O[x]^(n+1))}, Table[Coefficient[s, x^k Product[u[t], {t, p}]], {k, n}, {p, Reverse@Sort[Sort /@ IntegerPartitions[k]]}]];
    rows[7] // Flatten (* Andrey Zabolotskiy, Feb 19 2024 *)
  • PARI
    C(v)={my(S=Set(v)); (-1)^(#v)*(#v)!*prod(i=1, #S, my(x=S[i], e=#select(y-> y==x, v)); (x+1)^e/e! )}
    row(n)=[C(Vec(p)) | p<-Vecrev(partitions(n))]
    { for(n=0, 7, print(row(n))) } \\ Andrew Howroyd, Feb 19 2024

Formula

For the partition (1')^e(1)*(2')^e(2)*...*(n')^e(n) in P(m;...), the unsigned integer coefficient is [e(2)+e(3)+...+e(n)]! * [2^e(2)*3^e(3)*...*n^e(n)]/[e(2)!*e(3)!*...*e(n)!] with the sign determined by (-1)^[e(1) + m].
The partitions of P(m;..) are formed by adding one to each index of the partitions of m of Abramowitz and Stegun's partition table (p. 831; in the reversed order) and appending (1')^e(1) as a factor to obtain a partition of 2m.
Row sums are 1,-2,1,0,0,0,... . Row sums of the unsigned coefficients are A003480.

Extensions

Row 7 added by Andrey Zabolotskiy, Feb 19 2024

A355201 Normalized Schur self-convolution expansion coefficients K_{n+1}^n / n giving the coefficients of the Laurent series (compositionally) inverse to f(z) = c_0 z + c_1 + c_2 / z + c_3 / z^2 + ... . Irregular triangle for partition polynomials, with row lengths A000041(n) - 1 except for the first two, which are both of length 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 3, 3, 3, 1, 1, 6, 4, 2, 12, 6, 2, 4, 4, 1, 1, 10, 5, 10, 30, 10, 10, 10, 20, 10, 5, 5, 5, 1, 1, 15, 6, 30, 60, 15, 5, 60, 30, 60, 20, 15, 15, 30, 30, 15, 3, 6, 6, 6, 1, 1, 21, 7, 70, 105, 21, 35, 210, 70, 140, 35, 35, 105, 105, 105, 105, 35, 7, 42, 21, 21, 42, 42, 21, 7, 7, 7, 7, 1
Offset: 0

Views

Author

Tom Copeland, Jun 23 2022

Keywords

Comments

For the formal Laurent series f(z) = a_0 z + a_1 + a_2 / z + a_3 / z^2 + ..., the formal compositional inverse is g(z) = b_0 z + b_1 + b_2 / z + b_3 / z^2 + ..., whose coefficients are partition polynomials whose numerical factors are those of this irregular triangle T(n,k). For the Schur coefficients defined in the formula section, -b_n = K_{n}^{n-1} / (n-1) for n > 1.
Analytic proofs of the relationship between the partition polynomials of the compositional inverse pair of Laurent series and Schur's self-convolution expansion coefficients are given in Schur (beware of a sign error) and in Airault and Ren.
Explicit examples (with a_0=1) of K_{n}^{n-1} up through n=5 are in Airault and Bouali on p. 182.
Various formulas for the b_n in terms of the associahedra (A133437), noncrossing (A134264), reciprocal (A263633), and Faber partition (A263916) polynomials are given in Copeland as well as a derivation of the explicit multi-factorial expression in the formula section and a combinatorial model.

Examples

			Triangle begins:
1) 1
2) 1
3) 1
4) 1,  1
5) 1,  1,  2,  1
6) 1,  3,  3,  3,  3,  1
7) 1,  6,  4,  2, 12,  6,  2,  4,  4,  1
8) 1, 10,  5, 10, 30, 10, 10, 10, 20, 10,  5,  5,  5,  1
  ...
The first few partition polynomials, with the monomials in the order of the partitions on p. 831 of Abramowitz and Stegun, are
b0 =    1 / a0
b1 = - a1 / a0
b2 = - a2
b3 = -(a1 a2 + a0 a3)
b4 = -(a1^2 a2 + a0 a2^2 + 2 a0 a1 a3 + a0^2 a4)
b5 = -(a1^3 a2+ 3 a0 a1 a2^2 + 3 a0 a1^2 a_3 + 3 a0^2 a2 a3 + 3 a0^2 a1 a4
      + a0^3 a_5)
b6 = -(a1^4 a2 + 6 a0 a1^2 a2^2 + 4 a0 a1^3 a3 + 2 a0^2 a2^3 + 12 a0^2 a1 a2 a3
      + 6 a0^2 a1^2 a4  + 2 a0^3 a3^2 + 4a0^3 a2 a4 + 4 a0^3 a1 a5 + a0^4 a6)
b7 = -(a1^5 a2 + 10 a_0 a1^3 a2^2 + 5 a0 a1^4 a3 + 10 a0^2 a1 a2^3
      + 30 a0^2 a1^2 a2 a3 + 10 a0^2 a1^3 a4 + 10 a0^3 a2^2 a3 + 10 a0^3 a1 a3^2
      + 20 a0^3 a1 a2 a4 + 10 a0^3 a1^2 a5 + 5 a0^4 a3 a4 + 5 a0^4 a2 a5
      + 5 a0^4 a1 a6 + a0^5 a7)
_____________________
		

Crossrefs

Programs

  • Mathematica
    row[0] = row[1] = {1};
    row[n_] := With[{s = Expand[Coefficient[Sum[c[k] x^k, {k, 0, n}]^(n-1), x, n] / (n-1)]}, Table[Coefficient[s, Product[c[t], {t, p}]], {p, Reverse[Sort[Sort /@ IntegerPartitions[n, {n-1}, Range[0, n]]]]}]];
    Table[row[n], {n, 0, 8}] // Flatten (* Andrey Zabolotskiy, Feb 05 2023 *)

Formula

The index notations b(n), b_n, and bn are used interchangeably in this entry for indeterminates.
For n > 1, b_n(a_0,a_1,...,a_n) is a sum of monomials of the form a0^{e0} a1^{e1} a2^{e2} ... an^{en} with e1 * 1 + e2 * 2 + ... + en * n = n. When a_0 is not set to unity, e0 + e1 + ... + en = n - 1. (a1^n is not present.)
From a combinatorial argument in Copeland, the unsigned numerical coefficient of the monomial is given by (n-2)! / [(n - 1 - (e1 + e2 + ... + en))! e1! e2! ... en!].
The partition polynomials are generated by a subset of the Schur self-convolution expansion coefficients as -b_n = K_{n}^{n-1} / (n-1) =(D_{x=0}^n / n!) (a_0 + a_1 x + a_2 x^2 + ... + a_n x^n)^{n-1} / (n-1).
Row sums are the Catalan numbers A000108, ignoring the overall sign, for b_1 onwards.
Reduces to the Narayana triangle A001263 with a_0 = t and all the other indeterminates unity, ignoring the overall sign, for b_2 onwards.
Reduces to A091869 (reversed A091187) with a_1 = t and all the other indeterminates unity, ignoring the overall sign, for b_2 onwards.
b_n(c_1,...,c_n) = - Sum_{k=0}^{n-1} b_k(c_1,...,c_k) N_{n-k}(c_1,...,c_{n-k}) with c_0 = 1 and N_k(c_1,...,c_k) the noncrossing partition polynomials of A134264.
[b] = [R][N], representing the substitution of the noncrossing partition polynomials of A134264 for the indeterminates of the signed reciprocal polynomials of A263633 defined by R_n = 1 / (1 + c_1 x + c_2 x^2 + ...).
Conversely, [R][b] = [N] since the substitution transformation denoted by [R] is an involution, i.e., [R]^2 = [I], the identity substitution.
[b] = [R][A][R], a substitutional conjugation of the set of associahedra partition polynomials of A133147, or A111785, with re-indexing and (1') = 1, e.g., A_0 = 1, A_1 = -c_1, and A_2 = 2 c_1^2 - c_2.
Conversely, [A] = [R][b][R].

Extensions

Rows 8-9 added by Andrey Zabolotskiy, Feb 05 2023

A277394 Lagrange inversion, or reversion, for divided power series with odd powers only.

Original entry on oeis.org

1, -1, 10, -1, -280, 56, -1, 15400, -4620, 126, 120, -1, -1401400, 560560, -36036, -17160, 792, 220, -1, 190590400, -95295200, 10090080, 3203200, -126126, -360360, -50050, 1716, 2002, 364, -1
Offset: 1

Views

Author

Tom Copeland, Oct 12 2016

Keywords

Comments

Coefficients for partition polynomials for compositional inversion order-by-order of odd functions, e.g.f.s, or formal Taylor series f(x) = a1 x + a3 x^3/3! + a5 x^5/5! + ... .
The compositional inverse of f(x) is g(x)
= a1^(-1) [1] x
+ a1^(-4) [-1 a3] x^3/3!
+ a1^(-7) [10 a3^2 - 1 a1 a5] x^5/5!
+ a1^(-10)[-280 a3^3 + 56 a1 a3 a5 - a1^2 a7] x^7/7!
+ a1^(-13)[15400 a3^4 - 4620 a1 a3^2 a5 + a1^2 (126 a5^2 + 120 a3 a7) - a1^3 a9] * x^9/9! ... .

Crossrefs

Cf. A133437, A134264, A134685, A133932, A145271, A176740 for other inversion formulas.

Programs

  • Mathematica
    rows[nn_] := With[{s = InverseSeries[x + Sum[a[k] x^(2k+1)/(2k+1)!, {k, nn}] + O[x]^(2nn+2)]}, Table[(2n-1)! Coefficient[s, x^(2n-1) Product[a[w], {w, p}]], {n, nn}, {p, Reverse[Sort[Sort /@ IntegerPartitions[n-1]]]}]];
    rows[5] // Flatten (* Andrey Zabolotskiy, Mar 07 2024 *)

Extensions

Corrected and extended by Andrey Zabolotskiy, Mar 07 2024
Previous Showing 21-24 of 24 results.