cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-23 of 23 results.

A356144 Coefficients of the set of partition polynomials [RT] = [P][E]; i.e., coefficients of polynomials resulting from using the set of refined Eulerian polynomials, [E], of A145271 as the indeterminates of the set of permutahedra polynomials, [P], of A133314. Irregular triangle read by rows with lengths given by A000041.

Original entry on oeis.org

1, -1, 1, -1, -1, 2, -1, 1, -3, 2, 1, -1, -1, 4, -4, -2, 5, -1, -1, 1, -5, 8, 2, -4, -2, -4, 5, 4, -4, -1, -1, 6, -12, -3, 8, 18, -6, -14, 13, 2, -16, 14, 0, -8, -1, 1, -7, 18, 3, -20, 0, -15, 8, 18, 57, 6, -54, -15, -12, 84, -30, -48, 14, 14, -8, -13, -1, -1, 8, -24, -4, 32, 51, -27, -16, -6, 171, -42, -177, 50, 90, -18, 456, -276, -246, -15, 30, 154, -42, 124, -166, -113, 42, 6, -21, -19, -1
Offset: 0

Views

Author

Tom Copeland, Jul 27 2022

Keywords

Comments

I stipulate that the row lengths are A000041, but this imposes the insertion of a zero as a coefficient of a monomial for the polynomial RT_7 and for RT_8. The number of nonzero coefficients in each higher order polynomial remains to be determined. The monomials of the partition polynomials are arranged in the order (bottom to top) in Abramowitz and Stegun (starting on p. 831, link in A000041).
The analytic interpretation of these coefficients is related to the e.g.f.s of reciprocals of the derivatives (slopes of tangents) of a pair of compositionally inverse e.g.f.s as explicitly shown in the formulas.
With the notation introduced in the formula section, this set of partition polynomials, [RT], is the e.g.f. counterpart to the special Schur expansion coefficients [b], or [K], of A355201 for o.g.f.s. and is conjugate dual to the Lagrange inversion polynomials [L] of A134685.
For example, as shown in the formulas, [RT] = [P][E] = [P][L][P] where [P] is the set of polynomials of A133314, the refined Euler characteristic polynomials of the permutahedra; [E], the set A145271, the refined Eulerian polynomials; and [L], the set A134685, the classic Lagrange inversion polynomials--all related to transformations of e.g.f.s, or Taylor series, for which [RT], [L], and [E] can each be used to give the compositional inverse and [P], the multiplicative inverse, or reciprocal.
On the other hand, as shown in formulas for A355201, [K] = [R][N] = [R][A][R] where [R] is the set A263633 (mod signs), refined Pascal polynomials; [N], the set A134264, the refined Narayana, or noncrossing partition, polynomials; and [A], the set A133437, the refined Euler characteristic polynomials of the associahedra--all related to transformations of o.g.f.s, or power series, for which [K], [A], and [N] can each be used to give the compositional inverse and [R], the multiplicative inverse, or reciprocal. This is related to three pairs of compositionally inverse series--two pairs of Laurent series and one pair of power series.

Examples

			Arranged by rows, the coefficients are
0)  1;
1) -1;
2)  1, -1;
3) -1, 2, -1;
4)  1, -3, 2, 1, -1;
5) -1, 4, -4, -2, 5, -1, -1;
6)  1, -5, 8, 2, -4, -2, -4, 5, 4, -4, -1;
7) -1, 6, -12, -3, 8, 18, -6, -14, 13, 2, -16, 14, 0, -8, -1;
8)  1, -7, 18, 3, -20, 0, -15, 8, 18, 57, 6, -54, -15, -12, 84, -30, -48, 14, 14, -8, -13, -1;
. . .
The first few partition polynomials are
RT_0 =  1,
RT_1 = -a1,
RT_2 = a1^2  - a2,
RT_3 = -a1^3 + 2 a1 a2 - a3,
Rt_4 = a1^4 - 3 a1^2 a2 + 2 a2^2 + a1 a3 - a4,
RT_5 = -a1^5 + 4 a1^3 a2 - 4 a1 a2^2 - 2 a1^2 a3 + 5 a2 a3 - a1 a4 - a5,
RT_6 = a1^6 - 5 a1^4 a2 + 8 a1^2 a2^2 + 2 a1^3 a3 - 4 a2^3 - 2 a1 a2 a3 - 4 a1^2 a4 + 5 a3^2 + 4 a2 a4 - 4 a1 a5 - a6,
RT_7 = -a1^7 + 6 a1^5 a2 - 12*a1^3 a2^2 - 3 a1^4 a3 + 8 a1 a2^3 + 18 a1^2 a2 a3 - 6 a1^3 a4 - 14 a2^2 a3 + 13 a1 a3^2 + 2 a1 a2 a4 - 16 a1^2 a5 + 14 a3 a4 + 0 a2 a5 - 8 a1 a6 - a7,
RT_8 =  a1^8 - 7 a1^6 a2 + 18 a1^4 a2^2 + 3 a1^5 a3 - 20 a1^2 a2^3 + 0 a1^3 a2 a3 - 15 a1^4 a4 + 8 a2^4 + 18 a1 a2^2 a3 + 57 a1^2 a3^2 + 6 a1^2 a2 a4 - 54 a1^3 a5 - 15 a2 a3^2 - 12 a2^2 a4 + 84 a1 a3 a4 - 30 a1 a2 a5 - 48 a1^2 a6 + 14 a4^2 + 14 a3 a5 - 8 a2 a6 - 13 a1 a7 - a8.
		

Crossrefs

Programs

  • Mathematica
    rows[nn_] := {{1}}~Join~With[{s = 1 / D[InverseSeries[Integrate[1/(1 + Sum[c[k] x^k/k!, {k, nn}] + O[x]^(nn+1)), x]], x]}, Table[Coefficient[n! s, x^n Product[c[t], {t, p}]], {n, nn}, {p, Reverse[Sort[Sort /@ IntegerPartitions[n]]]}]];
    rows[7] // Flatten (* Andrey Zabolotskiy, Feb 17 2024 *)
  • SageMath
    B. = PolynomialRing(ZZ)
    A. = PowerSeriesRing(B)
    f = 1/(1 + a1*x + a2*x^2/factorial(2) + a3*x^3/factorial(3) + a4*x^4/factorial(4) + a5*x^5/factorial(5) + a6*x^6/factorial(6) + a7*x^7/factorial(7) + a8*x^8/factorial(8) + a9*x^9/factorial(9) + a10*x^10/factorial(10) )
    g = integrate(f)
    h = g.reverse()
    w = derivative(h,x)
    I = 1 / w
    # Added by # Peter Luschny, Feb 17 2024:
    # The list of coefficients in sparse format (i.e. without the zeros):
    for n, c in enumerate(I.list()[:10]):
        print(f"RT[{n}]", (factorial(n)*c).coefficients())

Formula

Denote this set of partition polynomials by [RT], the permutahedra polynomials of A133314 by [P], the refined Eulerian polynomials of A145271 by [E], and the Lagrange inversion polynomials of A134685 for e.g.f.s by [L]. Let the typically noncommutative product of two sets, e.g., [P][E], represent the substitution of the polynomials of [E] for the indeterminates of [P], i.e., a composition at the level of the indeterminates (see A356145 for examples). Let [I] be the substitutional identity transformation, and mark the substitutional inverse with the superscript -1. Then the following relations hold.
[RT] = [P][E] = [P][L][P] = [P]^{-1}[L][P] = [P][L][P]^{-1} since [P] is an involution, i.e., [P]^2 = [I], or [P] = [P]^{-1}, so [RT] and [L] are conjugate duals.
[RT]^{-1} = ([P][E])^{-1} = [E]^{-1}[P] = ([P][L][P])^{-1} = [P][L][P] = [RT], with [E]^{-1} = A356145, since [L] and [P] are involutions, so is [RT], i.e., [RT]^2 = [I].
RT_n(a_1,a_2,...,a_n) = D_{x=0}^n 1 / [ D_x f^{(-1)}(x)] for which D_x is the derivative w.r.t. x and the indeterminates are defined by 1 / [D_x f(x)] = 1 + a_1 x + a_2 x^2/2! + a_3 x^3/3! + ... with f(x) and f^{(-1)}(x) a compositional inverse pair of formal Taylor series, or e.g.f.s. This is the analytic equivalent of the algebraic relation [RT] = [P][E]. In words, the partition polynomials of row n (initial row is 0) is the n-th coefficient of the formal Taylor series of the reciprocal of the derivative of the compositional inverse of a function in terms of the Taylor series coefficients of the reciprocal of the derivative of that function. Note the correspondence with the analytic interpretation of [E]^{-1} of A356145, consistent with the algebraic identities above.
RT_n(a_1,a_2,...,a_n) = D_{x=0}^n f'(f^{(-1)}(x)) also, by the inverse function theorem, where the prime denotes differentiation with respect to the argument of the function.
With all a_k = (-1)^k, RT_0 = RT_1 = 1, otherwise RT_n = 0. This is determined with f(x) = e^{x}-1 and f^{(-1)}(x) = log(1+x).
With all a_k = 1, RT_0 = 1, RT_1 = -1, otherwise RT_n=0. This is determined with f(x) =1-e^{-x} and f^{(-1)}(x) = -log(1-x).
With all a_k = -1, RT_0 = 1 and RT_n = 2^(n-1) otherwise. This is determined with f(x) = (x - log(2-e^x))/2 and f^{(-1)}(x) = x - log(cosh(x)). (Careful, these are not the row sums of the absolute values of the numerical coefficients, which for the first ten polynomials are 1, 1, 2, 4, 8, 18, 40, 122, 446, and 2428.)
With a_k = k! 2^k, RT_0 = 1 and RT_n = -2*(2(n-1))! / (n-1)! = -2*n!*A000108(n-1) otherwise. This is determined with f(x) = x - x^2 and f^{(-1)}(x) = (1 - sqrt(1-4x))/2. Similar relations hold for the Fuss-Catalan sequences with f(x) = x - x^{m+1} for m > 1.

Extensions

Order of terms in rows 4-6 corrected by Andrey Zabolotskiy, Feb 17 2024

A350499 Unsigned coefficients of free moment partition polynomials determining the free cumulants from the free moments of free probability theory. Irregular triangle with row lengths given by A000041, n >= 1.

Original entry on oeis.org

1, 1, 1, 1, 3, 2, 1, 4, 2, 10, 5, 1, 5, 5, 15, 15, 35, 14, 1, 6, 6, 3, 21, 42, 7, 56, 84, 126, 42, 1, 7, 7, 7, 28, 56, 28, 28, 84, 252, 84, 210, 420, 462, 132, 1, 8, 8, 8, 4, 36, 72, 72, 36, 36, 120, 360, 180, 360, 30, 330, 1320, 660, 792, 1980, 1716, 429
Offset: 1

Views

Author

Tom Copeland, Jan 01 2022

Keywords

Comments

Coefficients are listed in Abramowitz and Stegun order (A036036).
Irregular triangular matrix of the unsigned coefficients of the free moment partition polynomials of free probability theory, for a single variable, that give the free formal cumulants given the free formal moments. This set of partition polynomials together with those of A134264 are the counterparts to the exp-log relations for the classical formal moments and cumulants associated with A036040 and A127671.
Associations with a compositional inverse pair of Laurent series, Kac-Schwarz operators of 2-D quantum theory, Virasoro / Witt / Heisenberg group actions, and KP and KdV integrable hierarchies are noted in references supplied in the MathOverflow link as well as a geometric combinatorial model based upon noncrossing partitions.

Examples

			Triangle begins:
  1;
  1, 1;
  1, 3, 2;
  1, 4, 2, 10,  5;
  1, 5, 5, 15, 15, 35, 14;
  ...
___________
The first few free cumulants in terms of the free moments are
  c_1 = m_1
  c_2 = m_2 - m_1^2
  c_3 = m_3 - 3 m_2 m_1 + 2 m_1^3
  c_4 = m_4 - 2 m_2^2 - 4m_3 m_1 + 10 m_2 m_1^2 - 5 m_1^4
  c_5 = m_5 - 5 m_2  m_3 - 5  m_4 m_1 + 15  m_2^2 m_1 + 15 m_3 m_1^2 - 35 m_2 m_1^3 + 14 m_1^5
___________
Conversely, from A134264, these free moments in terms of the free cumulants are
  m_1 = c_1
  m_2 = c_2 + c_1^2
  m_3 = c_3 + 3 c_2 c_1 + c_1^3
  m_4 = c_4 + + 2 c_2^2 + 4 c_3 c_1 + 6 c_2 c_1^2 + c_1^4
  m_5 = c_5 + 5 c_2 c_3 + 5 c_4 c_1 + 10 c_2^2 c_1 + 10 c_3 c_1^2  + 10 c_2 c_1^3 + c_1^5
___________
		

Crossrefs

Programs

  • PARI
    mv(n)={eval(Str("'m",n))}
    Trm(m,v)={my(S=Set(v)); for(i=1, #S, my(x=S[i]); m=polcoef(m, #select(y->y==x, v), mv(x))); m}
    Q(n)={polcoef(-x/serreverse(x*(1 + sum(k=1, n, -x^k*mv(k), O(x*x^n)))), n)}
    row(n)={my(q=Q(n)); [Trm(q,Vec(v)) | v<-partitions(n)]}
    { for(n=1, 7, print(row(n))) } \\ Andrew Howroyd, Feb 01 2022
    
  • PARI
    C(v)={my(n=vecsum(v), S=Set(v)); (n+#v-2)!/(n-1)!/prod(i=1, #S, my(x=S[i]); (#select(y->y==x, v))!)}
    row(n)=[C(Vec(p)) | p<-partitions(n)]
    { for(n=1, 7, print(row(n))) } \\ Andrew Howroyd, Feb 01 2022

Formula

O.g.f.: C(x) = 1 + c_1 x + c_2 x^2 + ... = x / (x + m_1 x^2 + m_2 x^3 + m_3 x^4 + ...)^(-1) = x / M^(-1)(x), the shifted reciprocal of the compositional inverse of a power series M(x) = x + m_1 x^2 + m_2 x^3 + ..., the o.g.f. of the free moments m_n in free probability theory.
Row sums: big Schroeder numbers A006318.
Refinement of A060693 and A088617, i.e., by letting m_n = -t and removing all resulting signs, the elements of these two lower triangular matrices are generated.
The coefficients of the highest order terms in m_1^n of the free moment partition polynomials are the signed Catalan numbers A000108.
Taking the derivative with respect to the indeterminate m_1 generates the Lagrange inversion partition polynomials, with shifted indices, of A133437 and A111785 with an overall scale factor. These Lagrange inversion polynomials are the refined Euler characteristic polynomials of the associahedra. E.g.,
D_{m_1} c_5 = 5 (- m_4 + 3 m_2^2 + 6 m_3 m_1 - 21 m_2 m_1^2 + 14 m_1^4). An analogous differential formula that applies to the classical formal cumulants in relation to the permutahedra is stated in my 2012 comment in A127671.
The o.g.f. satisfies the partial differential equations D_{m_1} (x / C(x)) = -(1/3) D_x (x / C(x))^3 and D_{m_1} (C(x) / x) = D_x (x / C(x)), where D_{m_1} and D_x are the partial derivatives with respect to m_1 and x.
More generally, D_{m_n} (x / C(x)) = -(1/(n+2)) D_x (x / C(x))^{n+2), equivalent to D_{m_n} M^(-1)(x) = -(1/(n+2)) D_x (M^(-1)(x))^{n+2). Equations of this type are found in Zhou (see eqn. 44 on p. 11), characterizing the KdV hierarchy. These differential equations can be transformed into the inviscid Burgers-Hopf partial differential equation (see, e.g., A133437, A086810, A001764, A002293, A133932, A134685, and A276850).
The formal free cumulants when identified as the indeterminates of the noncrossing Lagrange inversion partition polynomials NCP_n(c_1,c_2,...,c_n) = m_n of A134264 (as in the example section) satisfy the partial differential equations D_{m_k} NCP_n(c_1, ..., c_n) = d(m_n)/dm_k = delta_{n-k}, where delta_{n} is the Kronecker delta which is zero for all integers n other than n = 0, for which it evaluates as unity. This provides a recursion method for determining the partial derivatives dc_n/dm_k from the partial derivatives dc_p/dm_k and cumulants c_p with k <= p < n. For example, dc_k/dm_j = 0 for j > k and dc_k/dm_k = 1, so dm_3/dm_2 = 0 = D_{m_2} (c_3 + 3 c_2 c_1 + c_1^3) = dc_3/dm_2 + 3 c_1 dc_2/dm_2 = dc_3/dm_2 + 3 c_1 , implying dc_3/dm_2 = -3 c_1 = -3 m_1.
T(n,k) = (n+j-2)!/((n-1)!*Product_{i>=1} s_i!), where (1*s_1 + 2*s_2 + ... = n) is the k-th partition of n and j = s_1 + s_2 + ... is the number of parts. - Andrew Howroyd, Feb 01 2022
Conjecture: free cumulants in terms of the free moments are R(n,1) for n > 0 where R(n,k) = R(n-1,k+1) - Sum_{j=1..n-1} R(j,k)*R(n-j,1) for n > 1, k > 0 with R(1,k) = m_k for k > 0. - Mikhail Kurkov, Mar 30 2025

Extensions

Terms a(19) and beyond from Andrew Howroyd, Feb 01 2022

A277394 Lagrange inversion, or reversion, for divided power series with odd powers only.

Original entry on oeis.org

1, -1, 10, -1, -280, 56, -1, 15400, -4620, 126, 120, -1, -1401400, 560560, -36036, -17160, 792, 220, -1, 190590400, -95295200, 10090080, 3203200, -126126, -360360, -50050, 1716, 2002, 364, -1
Offset: 1

Views

Author

Tom Copeland, Oct 12 2016

Keywords

Comments

Coefficients for partition polynomials for compositional inversion order-by-order of odd functions, e.g.f.s, or formal Taylor series f(x) = a1 x + a3 x^3/3! + a5 x^5/5! + ... .
The compositional inverse of f(x) is g(x)
= a1^(-1) [1] x
+ a1^(-4) [-1 a3] x^3/3!
+ a1^(-7) [10 a3^2 - 1 a1 a5] x^5/5!
+ a1^(-10)[-280 a3^3 + 56 a1 a3 a5 - a1^2 a7] x^7/7!
+ a1^(-13)[15400 a3^4 - 4620 a1 a3^2 a5 + a1^2 (126 a5^2 + 120 a3 a7) - a1^3 a9] * x^9/9! ... .

Crossrefs

Cf. A133437, A134264, A134685, A133932, A145271, A176740 for other inversion formulas.

Programs

  • Mathematica
    rows[nn_] := With[{s = InverseSeries[x + Sum[a[k] x^(2k+1)/(2k+1)!, {k, nn}] + O[x]^(2nn+2)]}, Table[(2n-1)! Coefficient[s, x^(2n-1) Product[a[w], {w, p}]], {n, nn}, {p, Reverse[Sort[Sort /@ IntegerPartitions[n-1]]]}]];
    rows[5] // Flatten (* Andrey Zabolotskiy, Mar 07 2024 *)

Extensions

Corrected and extended by Andrey Zabolotskiy, Mar 07 2024
Previous Showing 21-23 of 23 results.