A309488 Primes whose decimal expansion is of the form d_1+0+d_2+0+d_3+0+...+0+d_k where d_i are digits with 1 <= d_i <= 9, k > 1 and + stands for concatenation.
101, 103, 107, 109, 307, 401, 409, 503, 509, 601, 607, 701, 709, 809, 907, 10103, 10301, 10303, 10501, 10601, 10607, 10709, 10903, 10909, 20101, 20107, 20201, 20407, 20507, 20509, 20707, 20807, 20809, 20903, 30103, 30109, 30203, 30307, 30403, 30509, 30703, 30707, 30803, 30809
Offset: 1
Examples
103 is the smallest term with two distinct digits > 0. 10607 is the smallest term with three distinct digits > 0.
Programs
-
Magma
sol:=[]; m:=1; for p in PrimesInInterval(101,50000) do v:=Reverse(Intseq(p)); test:=0; for u in [1..#v-1] do if u mod 2 eq 0 and v[u] eq 0 and v[u+1] ne 0 then test:=test+1; end if; end for; if test eq (#v-1)/2 then sol[m]:=p; m:=m+1; end if; end for; sol; // Marius A. Burtea, Aug 04 2019
-
Mathematica
aQ[n_] := PrimeQ[n] && OddQ[(m = Length[(d = IntegerDigits[n])])] && Flatten@Position[d, ?(# == 0 &)] == Range[2, m, 2]; Select[Range[100, 31000], aQ] (* _Amiram Eldar, Aug 04 2019 *)
-
PARI
eva(n) = subst(Pol(n), x, 10) f(n) = my(d=digits(n)); eva(vector(2*#d-1, k, if (k%2, d[1+k\2]))) \\ from Michel Marcus terms(n) = my(i=0); for(k=10, oo, if(i>=n, break); if(vecmin(digits(k)) > 0, my(iz=f(k)); if(ispseudoprime(iz), print1(iz, ", "); i++))) /* Print initial 40 terms as follows: */ terms(40) \\ Felix Fröhlich, Aug 08 2019
Comments