cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A136225 Matrix square of triangle A136220, read by rows.

Original entry on oeis.org

1, 2, 1, 8, 4, 1, 49, 26, 6, 1, 414, 232, 54, 8, 1, 4529, 2657, 629, 92, 10, 1, 61369, 37405, 9003, 1320, 140, 12, 1, 996815, 627435, 153276, 22606, 2385, 198, 14, 1, 18931547, 12248365, 3031553, 450066, 47500, 3904, 266, 16, 1, 412345688, 273211787
Offset: 0

Views

Author

Paul D. Hanna, Jan 28 2008

Keywords

Comments

Column 0 of this triangle = column 1 of square array A136217.

Examples

			Let P = A136220, then this triangle is P^2 and begins:
1;
2, 1;
8, 4, 1;
49, 26, 6, 1;
414, 232, 54, 8, 1;
4529, 2657, 629, 92, 10, 1;
61369, 37405, 9003, 1320, 140, 12, 1;
996815, 627435, 153276, 22606, 2385, 198, 14, 1;
18931547, 12248365, 3031553, 450066, 47500, 3904, 266, 16, 1; ...
where column k of P^2 = column 0 of V^(k+1) and
triangle V = A136230 begins:
1;
2, 1;
8, 5, 1;
49, 35, 8, 1;
414, 325, 80, 11, 1;
4529, 3820, 988, 143, 14, 1;
61369, 54800, 14696, 2200, 224, 17, 1; ...
where column k of V = column 0 of P^(3k+2).
Triangle P = A136220 begins:
1;
1, 1;
3, 2, 1;
15, 10, 3, 1;
108, 75, 21, 4, 1;
1036, 753, 208, 36, 5, 1;
12569, 9534, 2637, 442, 55, 6, 1;
185704, 146353, 40731, 6742, 805, 78, 7, 1; ...
where column k of P = column 0 of U^(k+1) and U = A136228.
		

Crossrefs

Cf. columns: A136226, A136227; related tables: A136228 (U), A136230 (V), A136231 (W=P^3), A136217, A136218.

Programs

  • PARI
    {T(n,k)=local(P=Mat(1),U,PShR);if(n>0,for(i=0,n, PShR=matrix(#P,#P, r,c, if(r>=c,if(r==c,1,if(c==1,0,P[r-1,c-1]))));U=P*PShR^2; U=matrix(#P+1, #P+1, r,c, if(r>=c, if(r<#P+1,U[r,c], if(c==1,(P^3)[ #P,1],(P^(3*c-1))[r-c+1,1])))); P=matrix(#U, #U, r,c, if(r>=c, if(r<#R,P[r,c], (U^c)[r-c+1,1])))));(P^2)[n+1,k+1]}

Formula

Let P=A136220, V=A136230, then column k of P^2 (this triangle) = column 0 of V^(k+1) while column j of V = column 0 of P^(3j+2).

A136234 Matrix square of triangle V = A136230, read by rows.

Original entry on oeis.org

1, 4, 1, 26, 10, 1, 232, 110, 16, 1, 2657, 1435, 248, 22, 1, 37405, 22135, 4240, 440, 28, 1, 627435, 397820, 81708, 9295, 686, 34, 1, 12248365, 8203057, 1773156, 214478, 17248, 986, 40, 1, 273211787, 191405232, 43039532, 5442349, 463267, 28747, 1340
Offset: 0

Views

Author

Paul D. Hanna, Feb 07 2008

Keywords

Examples

			This triangle, V^2, begins:
1;
4, 1;
26, 10, 1;
232, 110, 16, 1;
2657, 1435, 248, 22, 1;
37405, 22135, 4240, 440, 28, 1;
627435, 397820, 81708, 9295, 686, 34, 1;
12248365, 8203057, 1773156, 214478, 17248, 986, 40, 1;
273211787, 191405232, 43039532, 5442349, 463267, 28747, 1340, 46, 1; ...
where column 0 of V^2 = column 1 of P^2 = triangle A136225.
		

Crossrefs

Cf. A136227 (column 0); related tables: A136220 (P), A136228 (U), A136230 (V), A136231 (W=P^3), A136237 (V^3).

Programs

  • PARI
    {T(n,k)=local(P=Mat(1),U=Mat(1),V=Mat(1),PShR);if(n>0,for(i=0,n, PShR=matrix(#P,#P, r,c, if(r>=c,if(r==c,1,if(c==1,0,P[r-1,c-1])))); U=P*PShR^2;V=P^2*PShR; U=matrix(#P+1, #P+1, r,c, if(r>=c, if(r<#P+1,U[r,c], if(c==1,(P^3)[ #P,1],(P^(3*c-1))[r-c+1,1])))); V=matrix(#P+1, #P+1, r,c, if(r>=c, if(r<#P+1,V[r,c], if(c==1,(P^3)[ #P,1],(P^(3*c-2))[r-c+1,1])))); P=matrix(#U, #U, r,c, if(r>=c, if(r<#R,P[r,c], (U^c)[r-c+1,1]))))); (V^2)[n+1,k+1]}

Formula

Column k of V^2 (this triangle) = column 1 of P^(3k+2), where P = triangle A136220.

A136235 Matrix square of triangle W = A136231; also equals P^6, where P = triangle A136220.

Original entry on oeis.org

1, 6, 1, 48, 12, 1, 495, 150, 18, 1, 6338, 2160, 306, 24, 1, 97681, 36103, 5643, 516, 30, 1, 1767845, 694079, 115917, 11592, 780, 36, 1, 36839663, 15164785, 2657946, 282122, 20655, 1098, 42, 1, 870101407, 372225541, 67708113, 7502470, 580780
Offset: 0

Views

Author

Paul D. Hanna, Feb 07 2008

Keywords

Examples

			This triangle, W^2, begins:
1;
6, 1;
48, 12, 1;
495, 150, 18, 1;
6338, 2160, 306, 24, 1;
97681, 36103, 5643, 516, 30, 1;
1767845, 694079, 115917, 11592, 780, 36, 1;
36839663, 15164785, 2657946, 282122, 20655, 1098, 42, 1;
870101407, 372225541, 67708113, 7502470, 580780, 33480, 1470, 48, 1; ...
where column 0 of W^2 = column 1 of W = triangle A136231.
		

Crossrefs

Cf. A136221 (column 0); related tables: A136220 (P), A136228 (U), A136230 (V), A136231 (W), A136238 (W^3).

Programs

  • PARI
    {T(n,k)=local(P=Mat(1),U=Mat(1),W=Mat(1),PShR);if(n>0,for(i=0,n, PShR=matrix(#P,#P, r,c, if(r>=c,if(r==c,1,if(c==1,0,P[r-1,c-1])))); U=P*PShR^2; U=matrix(#P+1, #P+1, r,c, if(r>=c, if(r<#P+1,U[r,c], if(c==1,(P^3)[ #P,1],(P^(3*c-1))[r-c+1,1])))); P=matrix(#U, #U, r,c, if(r>=c, if(r<#R,P[r,c], (U^c)[r-c+1,1]))); W=P^3;));(W^2)[n+1,k+1]}

Formula

Column k of W^2 (this triangle) = column 1 of W^(k+1), where W = P^3 and P = triangle A136220.

A136237 Matrix cube of triangle V = A136230, read by rows.

Original entry on oeis.org

1, 6, 1, 54, 15, 1, 629, 225, 24, 1, 9003, 3770, 504, 33, 1, 153276, 71655, 10988, 891, 42, 1, 3031553, 1539315, 259236, 23903, 1386, 51, 1, 68406990, 37072448, 6688092, 672672, 44135, 1989, 60, 1, 1736020806, 992226060, 188767184, 20225436, 1442049
Offset: 0

Views

Author

Paul D. Hanna, Feb 07 2008

Keywords

Examples

			This triangle, V^3, begins:
1;
6, 1;
54, 15, 1;
629, 225, 24, 1;
9003, 3770, 504, 33, 1;
153276, 71655, 10988, 891, 42, 1;
3031553, 1539315, 259236, 23903, 1386, 51, 1;
68406990, 37072448, 6688092, 672672, 44135, 1989, 60, 1;
1736020806, 992226060, 188767184, 20225436, 1442049, 73304, 2700, 69, 1;
where column 0 of V^3 = column 2 of P^2 = triangle A136225.
		

Crossrefs

Cf. related tables: A136220 (P), A136228 (U), A136230 (V), A136231 (W=P^3), A136234 (V^2).

Programs

  • PARI
    {T(n,k)=local(P=Mat(1),U=Mat(1),V=Mat(1),PShR);if(n>0,for(i=0,n, PShR=matrix(#P,#P, r,c, if(r>=c,if(r==c,1,if(c==1,0,P[r-1,c-1])))); U=P*PShR^2;V=P^2*PShR; U=matrix(#P+1, #P+1, r,c, if(r>=c, if(r<#P+1,U[r,c], if(c==1,(P^3)[ #P,1],(P^(3*c-1))[r-c+1,1])))); V=matrix(#P+1, #P+1, r,c, if(r>=c, if(r<#P+1,V[r,c], if(c==1,(P^3)[ #P,1],(P^(3*c-2))[r-c+1,1])))); P=matrix(#U, #U, r,c, if(r>=c, if(r<#R,P[r,c], (U^c)[r-c+1,1])))));(V^3)[n+1,k+1]}

Formula

Column k of V^3 (this triangle) = column 2 of P^(3k+2), where P = triangle A136220.

A136238 Matrix cube of triangle W = A136231; also equals P^9, where P = triangle A136220.

Original entry on oeis.org

1, 9, 1, 99, 18, 1, 1323, 306, 27, 1, 21036, 5643, 621, 36, 1, 390012, 115917, 14580, 1044, 45, 1, 8287041, 2657946, 366129, 29754, 1575, 54, 1, 198918840, 67708113, 9968067, 882318, 52785, 2214, 63, 1, 5329794042, 1903562412, 294952140
Offset: 0

Views

Author

Paul D. Hanna, Feb 07 2008

Keywords

Examples

			This triangle, W^3, begins:
1;
9, 1;
99, 18, 1;
1323, 306, 27, 1;
21036, 5643, 621, 36, 1;
390012, 115917, 14580, 1044, 45, 1;
8287041, 2657946, 366129, 29754, 1575, 54, 1;
198918840, 67708113, 9968067, 882318, 52785, 2214, 63, 1;
5329794042, 1903562412, 294952140, 27779046, 1804290, 85293, 2961, 72, 1;
where column 0 of W^3 = column 2 of W = triangle A136231.
		

Crossrefs

Cf. related tables: A136220 (P), A136228 (U), A136230 (V), A136231 (W), A136235 (W^2).

Programs

  • PARI
    {T(n,k)=local(P=Mat(1),U=Mat(1),W=Mat(1),PShR);if(n>0,for(i=0,n, PShR=matrix(#P,#P, r,c, if(r>=c,if(r==c,1,if(c==1,0,P[r-1,c-1])))); U=P*PShR^2; U=matrix(#P+1, #P+1, r,c, if(r>=c, if(r<#P+1,U[r,c], if(c==1,(P^3)[ #P,1],(P^(3*c-1))[r-c+1,1])))); P=matrix(#U, #U, r,c, if(r>=c, if(r<#R,P[r,c], (U^c)[r-c+1,1]))); W=P^3;));(W^3)[n+1,k+1]}

Formula

Column k of W^3 (this triangle) = column 2 of W^(k+1), where W = P^3 and P = triangle A136220.

A136232 Triangle, read by rows, equal to the matrix 4th power of triangle A136220.

Original entry on oeis.org

1, 4, 1, 24, 8, 1, 198, 76, 12, 1, 2116, 888, 156, 16, 1, 28052, 12542, 2350, 264, 20, 1, 446560, 209506, 41034, 4864, 400, 24, 1, 8325700, 4058806, 821562, 100988, 8710, 564, 28, 1, 178284892, 89706276, 18631332, 2352116, 209440, 14168, 756, 32, 1
Offset: 0

Views

Author

Paul D. Hanna, Jan 28 2008

Keywords

Examples

			This triangle P^4 begins:
1,
4, 1;
24, 8, 1;
198, 76, 12, 1;
2116, 888, 156, 16, 1;
28052, 12542, 2350, 264, 20, 1;
446560, 209506, 41034, 4864, 400, 24, 1;
8325700, 4058806, 821562, 100988, 8710, 564, 28, 1;
178284892, 89706276, 18631332, 2352116, 209440, 14168, 756, 32, 1; ...
where column k = column 1 of U^(k+1);
triangle U = A136228 begins:
1;
1, 1;
3, 4, 1;
15, 24, 7, 1;
108, 198, 63, 10, 1;
1036, 2116, 714, 120, 13, 1;
12569, 28052, 9884, 1725, 195, 16, 1; ...
where column k of U = column 0 of P^(3k+1) and
triangle P = A136220 begins:
1;
1, 1;
3, 2, 1;
15, 10, 3, 1;
108, 75, 21, 4, 1;
1036, 753, 208, 36, 5, 1;
12569, 9534, 2637, 442, 55, 6, 1; ...
		

Crossrefs

Cf. A136229 (column 0); related tables: A136220 (P), A136228 (U).

Programs

  • PARI
    {T(n,k)=local(P=Mat(1),U,PShR);if(n>0,for(i=0,n, PShR=matrix(#P,#P, r,c, if(r>=c,if(r==c,1,if(c==1,0,P[r-1,c-1]))));U=P*PShR^2; U=matrix(#P+1, #P+1, r,c, if(r>=c, if(r<#P+1,U[r,c], if(c==1,(P^3)[ #P,1],(P^(3*c-1))[r-c+1,1])))); P=matrix(#U, #U, r,c, if(r>=c, if(r<#R,P[r,c], (U^c)[r-c+1,1])))));(P^4)[n+1,k+1]}

Formula

Column k of this triangle = column 1 of U^(k+1) where U = A136228.
Previous Showing 11-16 of 16 results.