cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-24 of 24 results.

A354953 Decimal expansion of Sum_{p = primes} 1 / (p * log(p)^5).

Original entry on oeis.org

3, 3, 5, 9, 8, 9, 8, 7, 6, 0, 1, 2, 7, 2, 5, 3, 0, 8, 8, 3, 6, 4, 2, 7, 4, 3, 6, 8, 0, 6, 3, 3, 1, 3, 5, 7, 0, 4, 0, 7, 4, 7, 2, 6, 8, 9, 6, 0, 3, 4, 6, 9, 0, 0, 4, 1, 9, 4, 8, 6, 3, 1, 4, 0, 6, 4, 5, 8, 7, 2, 3, 3, 6, 8, 8, 3, 0, 4, 0, 4, 7, 7, 9, 2, 1, 0, 9, 8, 5, 4, 8, 4, 1, 4, 3, 9, 2, 3, 5, 5, 8, 0, 8, 2, 0
Offset: 1

Views

Author

Vaclav Kotesovec, Jun 13 2022

Keywords

Examples

			3.359898760127253088364274368063313570407472689603469004194863140645872...
		

Crossrefs

Programs

  • Mathematica
    digits = 105; precision = digits + 15;
    tmax = 400; (* integrand considered negligible beyond tmax *)
    kmax = 400; (* f(k) considered negligible beyond kmax *)
    InLogZeta[k_] := NIntegrate[(t-k)^4 Log[Zeta[t]], {t, k, tmax},
      WorkingPrecision -> precision, MaxRecursion -> 20,
      AccuracyGoal -> precision];
    f[k_] := With[{mu = MoebiusMu[k]}, If[mu==0, 0, (mu/(4! k^6))* InLogZeta[k]]];
    s = 0; Do[s = s + f[k]; Print[k, " ", s], {k, 1, kmax}];
    RealDigits[s][[1]][[1 ;; digits]] (* Jean-François Alcover, Jun 23 2022 *)
  • PARI
    default(realprecision, 200); s=0; for(k=1, 500, s = s + moebius(k)/(4!*k^6) * intnum(x=k,[[1], 1], (x-k)^4 * log(zeta(x))); print(s));

Extensions

Last 5 digits corrected by Vaclav Kotesovec, Jun 22 2022, following a suggestion from Jean-François Alcover

A354954 Decimal expansion of Sum_{p = primes} 1 / (p * log(p)^4).

Original entry on oeis.org

2, 4, 4, 3, 2, 2, 7, 0, 4, 3, 5, 4, 4, 4, 1, 0, 1, 8, 8, 7, 2, 9, 6, 8, 3, 2, 9, 7, 3, 6, 9, 7, 3, 4, 5, 7, 6, 4, 6, 1, 4, 5, 3, 0, 8, 7, 7, 4, 0, 4, 0, 0, 4, 2, 8, 6, 6, 4, 6, 5, 1, 4, 8, 5, 2, 6, 7, 3, 5, 0, 8, 5, 9, 9, 6, 4, 5, 3, 2, 5, 5, 9, 4, 5, 7, 8, 7, 6, 9, 0, 3, 2, 6, 7, 0, 0, 9, 0, 6, 0, 1, 6, 7, 9, 2
Offset: 1

Views

Author

Vaclav Kotesovec, Jun 13 2022

Keywords

Examples

			2.443227043544410188729683297369734576461453087740400428664651485267350...
		

Crossrefs

Programs

  • PARI
    default(realprecision, 200); s=0; for(k=1, 500, s = s + moebius(k)/(6*k^5) * intnum(x=k,[[1], 1], (x-k)^3 * log(zeta(x))); print(s));

Extensions

Last 2 digits corrected by Vaclav Kotesovec, Jun 22 2022

A154946 Decimal expansion of the sum_p 1/((p-1)*log p) over the primes p=A000040.

Original entry on oeis.org

2, 5, 6, 4, 3, 4, 3, 2, 2, 0, 6, 8, 6, 3, 0, 9, 1, 9
Offset: 1

Views

Author

R. J. Mathar, Jan 17 2009

Keywords

Comments

Variant of A137245.

Examples

			Equals 2.56434322068...= 1/(1*log 2)+1/(2*log 3)+1/(4*log 5)+1/(6*log 7)+...
		

Formula

Equals sum_{i=1,2,3..infinity} 1/( A006093(i)*log A000040(i)).

A366249 Decimal expansion of lim_{x->oo} (Sum_{primes p<=x} 1/(p*log(log(p)))) - log(log(log(x))).

Original entry on oeis.org

2, 9, 3, 8, 3, 2, 9, 0, 1
Offset: 1

Views

Author

Artur Jasinski, Oct 05 2023

Keywords

Comments

Value computed and communicated by Pascal Sebah.

Examples

			2.93832901...
		

Crossrefs

Previous Showing 21-24 of 24 results.