cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A167543 a(n) = (n-5)*(n-6)*(n-7)*(n-16)/24.

Original entry on oeis.org

-2, -7, -15, -25, -35, -42, -42, -30, 0, 55, 143, 273, 455, 700, 1020, 1428, 1938, 2565, 3325, 4235, 5313, 6578, 8050, 9750, 11700, 13923, 16443, 19285, 22475, 26040, 30008, 34408, 39270, 44625, 50505, 56943, 63973, 71630, 79950, 88970, 98728, 109263, 120615
Offset: 8

Views

Author

Jamel Ghanouchi, Nov 06 2009

Keywords

Crossrefs

Programs

  • Magma
    [Binomial(n-5,3)*(n-16)/4: n in [8..60]]; // G. C. Greubel, Jul 30 2022
    
  • Mathematica
    Table[(n-5)*(n-6)*(n-7)*(n-16)/24, {n,8,60}] (* G. C. Greubel, Jun 15 2016 *)
  • SageMath
    [binomial(n-5,3)*(n-16)/4 for n in (8..60)] # G. C. Greubel, Jul 30 2022

Formula

a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
G.f.: x^8*(-2+3*x)/(1-x)^5.
E.g.f.: (1/24)*( -3360 - 1800*x - 420*x^2 - 52*x^3 - 3*x^4 + (3360 - 1560*x + 300*x^2 - 28*x^3 + x^4)*exp(x) ). - G. C. Greubel, Jul 30 2022

Extensions

Definition simplified, sequence extended by R. J. Mathar, Nov 12 2009

A137350 A triangular Sequence of coefficients of a three deep polynomial recursion based on a Chebyshev kind and a Padovan recursion: Chebyshev; p(x,n)=x*p(x,n-1)-p(x,n-2); Padovan: a(n)=a(n-2)+a(n-3); Q(x, n) = x*Q(x, n - 2) - Q(x, n - 3).

Original entry on oeis.org

1, -1, 1, 0, 1, -1, -1, 1, 1, -1, 1, 0, -2, -1, 1, 1, 2, -2, 1, -1, 1, -3, -1, 1, 0, 3, 3, -3, 1, -1, -3, 3, -4, -1, 1, 1, -1, 6, 4, -4, 1
Offset: 1

Views

Author

Roger L. Bagula, Apr 08 2008

Keywords

Comments

Row sums are:
{1, 0, 1, -1, 1, -2, 2, -3, 4, -5, 7}
In differential equation terms this is equivalent to ( in Mathematica notation):
D[y[x],{x,3}]=x*D[y[x],{x,1}]-y[x];
Two simple possible HypergeometricPFQ based results are:
DSolve[{D[y[x], {x, 3}] == x*D[y[x], {x, 1}] - y[x], y[0] == 1}, y, x];
DSolve[{D[y[x], {x, 3}] == x*D[y[x], {x, 1}] - y[x], y[0] == 0}, y, x].

Examples

			{1},
{-1, 1},
{0, 1},
{-1, -1, 1},
{1, -1, 1},
{0, -2, -1, 1},
{1, 2, -2, 1},
{-1, 1, -3, -1, 1},
{0, 3, 3, -3, 1},
{-1, -3, 3, -4, -1, 1},
{1, -1, 6, 4, -4, 1}
		

Crossrefs

Programs

  • Mathematica
    Clear[Q, x] Q[x, -2] = 1 - x; Q[x, -1] = 0; Q[x, 0] = 1; Q[x_, n_] := Q[x, n] = x*Q[x, n - 2] - Q[x, n - 3]; Table[ExpandAll[Q[x, n]], {n, 0, 10}]; a = Table[CoefficientList[Q[x, n], x], {n, 0, 10}]; Flatten[a]

Formula

Q(x, n) = x*Q(x, n - 2) - Q(x, n - 3).

A160242 Triangle A(n,m) read by rows: a quarter of the Fourier coefficient [cos(m*t)] of the shifted Boubaker polynomial B_n(2*cos t)-2*cos(n*t).

Original entry on oeis.org

1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 2

Views

Author

Haydar Rahmanov, May 05 2009

Keywords

Comments

Starting from the polynomials B_n(x) defined in A137276 and A135929, we insert x=2*cos(t), and define the Fourier coefficients A(n,m) by B_n(2*cos t)-2*cos(n*t) = 4*sum(m=0,..,n-2) A(n,m)*cos(m*t).
A(n,m) is not an integer for n=0, so the table starts at n=1. Furthermore, A(n,m)=0 if n-m is odd, these regular zeros are skipped as usual, so effectively the first table entry appears at n=2.
Simpler definition from R. J. Mathar, Apr 15 2010: a(n)=1 if n =0 or n in A002061, otherwise a(n)=2. So this is a kind of characteristic function of the central polygonal numbers A002061.

Examples

			Using T^m =cos(m*t) as a notational shortcut, the expansions start
; B_1(2 cos t)-2*cos 1 t = 0
1 ; B_2(2 cos t)-2*cos 2 t = 1
0 2 ; B_3(2 cos t)-2*cos 3 t = 2*T
1 0 2 ; B_4(2 cos t)-2*cos 4 t = 1+2*T^2
0 2 0 2 ; B_5(2 cos t)-2*cos 5 t = 2*T+2*T^3
1 0 2 0 2 ; B_6(2 cos t)-2*cos 6 t = 1+2*T^2+2*T^4
0 2 0 2 0 2 ; B_7(2 cos t)-2*cos 7 t = 2*T+2*T^3+2*T^5
1 0 2 0 2 0 2 ; B_8(2 cos t)-2*cos 8 t = 1+2*T^2+2*T^4+2*T^6
0 2 0 2 0 2 0 2 ; B_9(2 cos t)-2*cos 9 t = 2*T+2*T^3+2*T^5+2*T^7
1 0 2 0 2 0 2 0 2 ; B_10(2 cos t)-2*cos 10 t = 1+2*T^2+2*T^4+2*T^6+2*T^8
0 2 0 2 0 2 0 2 0 2 ; B_11(2 cos t)-2*cos 11 t = 2*T^3+2*T^5+2*T^7+2*T^9+2*T
		

Programs

  • Mathematica
    centralPolygonalQ[n_] := Resolve[Exists[k, k>0, n == k^2-k+1], Integers];
    b[n_] := If[n == 0 || centralPolygonalQ[n], 1, 2];
    a[n_] := b[n-1];
    Table[a[n], {n, 2, 106}] (* Jean-François Alcover, Oct 31 2018, after R. J. Mathar *)

Extensions

Definition clarified, publication title corrected, sequence extended by R. J. Mathar, Dec 07 2009
Previous Showing 11-13 of 13 results.