Original entry on oeis.org
1, 101, 10001, 1000001, 100000001, 10000000001, 1000000000001, 100000000000001, 10000000000000001, 1000000000000000001, 100000000000000000001, 10000000000000000000001
Offset: 1
n ..... a(n)
1 ....... 1
2 ...... 101
3 ..... 10001
4 .... 1000001
5 ... 100000001
-
[1] cat [10^(2*n)+1: n in [1..15]]; // Vincenzo Librandi, Jul 27 2014
-
A152756[n_] := If[n == 1, 1, 100^(n-1) + 1]; Array[A152756, 20] (* or *)
LinearRecurrence[{101, -100}, {1, 101, 10001}, 20] (* Paolo Xausa, Oct 05 2024 *)
A147816
Concatenation of n digits 1 and 2(n-1) digits 0.
Original entry on oeis.org
1, 1100, 1110000, 1111000000, 1111100000000, 1111110000000000, 1111111000000000000, 1111111100000000000000, 1111111110000000000000000, 1111111111000000000000000000, 1111111111100000000000000000000, 1111111111110000000000000000000000
Offset: 1
n ...... a(n)
1 ....... 1
2 ...... 1100
3 ..... 1110000
4 .... 1111000000
5 ... 1111100000000
Cf.
A000533,
A016152,
A135577,
A138119,
A138120,
A138144,
A138145,
A138146,
A138721,
A138826,
A147757,
A147759.
-
Array[(10^#-1)*10^(2*#-2)/9 &, 20] (* or *)
LinearRecurrence[{1100, -100000}, {1, 1100}, 20] (* Paolo Xausa, Feb 27 2024 *)
-
Vec(x/((100*x-1)*(1000*x-1)) + O(x^100)) \\ Colin Barker, Sep 16 2013
A153498
Palindromes formed from concatenation of A147759(n) and the same string A147759(n) but without its initial digit.
Original entry on oeis.org
1, 111, 10101, 1001001, 101010101, 10110101101, 1010101010101, 101001010100101, 10101010101010101, 1010110101010110101, 101010101010101010101, 10101001010101010010101
Offset: 1
n ............. a(n)
1 .............. 1
2 ............. 111
3 ............ 10101
4 ........... 1001001
5 .......... 101010101
6 ......... 10110101101
7 ........ 1010101010101
8 ....... 101001010100101
9 ...... 10101010101010101
10 .... 1010110101010110101
11 ... 101010101010101010101
======================================
Another visualization of the structure
======================================
1 .............. *
2 ............. /|\
3 ............ /.|.\
4 ........... /..|..\
5 .......... /.*.|.*.\
6 ......... /./|.|.|\.\
7 ........ /./.|.|.|.\.\
8 ....... /./..|.|.|..\.\
9 ...... /./.*.|.|.|.*.\.\
10 .... /././|.|.|.|.|\.\.\
11 ... /././.|.|.|.|.|.\.\.\
Original entry on oeis.org
1, 101, 10101, 1011101, 101111101, 10111111101, 1011111111101, 101111111111101, 10111111111111101, 1011111111111111101, 101111111111111111101, 10111111111111111111101, 1011111111111111111111101, 101111111111111111111111101, 10111111111111111111111111101
Offset: 1
n ...... a(n)
1 ....... 1
2 ...... 101
3 ..... 10101
4 .... 1011101
5 ... 101111101
-
Rest[CoefficientList[Series[x(1+10x)(100x^2-10x+1)/((100x-1)(x-1)),{x,0,20}],x]] (* or *) Join[{1,101},Table[FromDigits[Join[{1,0},PadRight[ {},2n+1,1],{0,1}]],{n,0,20}]] (* Harvey P. Dale, Dec 26 2014 *)
Original entry on oeis.org
1, 111, 11011, 1100011, 110000011, 11000000011, 1100000000011, 110000000000011, 11000000000000011, 1100000000000000011, 110000000000000000011, 11000000000000000000011
Offset: 1
n ...... a(n)
1 ....... 1
2 ...... 111
3 ..... 11011
4 .... 1100011
5 ... 110000011
-
LinearRecurrence[{101,-100},{1,111,11011,1100011},20] (* Harvey P. Dale, Nov 26 2019 *)
-
Vec(-x*(10*x-1)*(10*x+1)^2/((x-1)*(100*x-1)) + O(x^100)) \\ Colin Barker, Sep 16 2013
A153500
First 3 terms coincide with A152756. For n>3, a(n) is the palindromic number formed from concatenation of 1, 0, A147759(n-3), 0, A147759(n-3), 0 and 1.
Original entry on oeis.org
1, 101, 10001, 1010101, 101101101, 10101010101, 1010010100101, 101010101010101, 10101101010110101, 1010101010101010101, 101010010101010010101, 10101010101010101010101, 1010101101010101011010101, 101010101010101010101010101, 10101010010101010101001010101
Offset: 1
n ............ a(n)
1 ............. 1
2 ............ 101
3 ........... 10001
4 .......... 1010101
5 ......... 101101101
6 ........ 10101010101
7 ....... 1010010100101
8 ...... 101010101010101
9 ..... 10101101010110101
10 ... 1010101010101010101
======================================
Another visualization of the structure
======================================
1 ............. *
2 ............ /.\
3 ........... /...\
4 .......... /.*.*.\
5 ......... /./|.|\.\
6 ........ /./.|.|.\.\
7 ....... /./..|.|..\.\
8 ...... /./.*.|.|.*.\.\
9 ..... /././|.|.|.|\.\.\
10 ... /././.|.|.|.|.\.\.\
Comments