A153500
First 3 terms coincide with A152756. For n>3, a(n) is the palindromic number formed from concatenation of 1, 0, A147759(n-3), 0, A147759(n-3), 0 and 1.
Original entry on oeis.org
1, 101, 10001, 1010101, 101101101, 10101010101, 1010010100101, 101010101010101, 10101101010110101, 1010101010101010101, 101010010101010010101, 10101010101010101010101, 1010101101010101011010101, 101010101010101010101010101, 10101010010101010101001010101
Offset: 1
n ............ a(n)
1 ............. 1
2 ............ 101
3 ........... 10001
4 .......... 1010101
5 ......... 101101101
6 ........ 10101010101
7 ....... 1010010100101
8 ...... 101010101010101
9 ..... 10101101010110101
10 ... 1010101010101010101
======================================
Another visualization of the structure
======================================
1 ............. *
2 ............ /.\
3 ........... /...\
4 .......... /.*.*.\
5 ......... /./|.|\.\
6 ........ /./.|.|.\.\
7 ....... /./..|.|..\.\
8 ...... /./.*.|.|.*.\.\
9 ..... /././|.|.|.|\.\.\
10 ... /././.|.|.|.|.\.\.\
A000533
a(0)=1; a(n) = 10^n + 1, n >= 1.
Original entry on oeis.org
1, 11, 101, 1001, 10001, 100001, 1000001, 10000001, 100000001, 1000000001, 10000000001, 100000000001, 1000000000001, 10000000000001, 100000000000001, 1000000000000001, 10000000000000001
Offset: 0
The continued fraction expansion of a(9)^(1/3) begins [1000; 3000000, 1000, 4500000, 800, 5357142, 1, 6, 14, 6, 1, 5999999, 6, 1, 12, 7, 1, ...] with 5 large partial quotients immediately following the integer part of the number. - _Peter Bala_, Sep 25 2015
-
[10^n + 1 - 0^n: n in [0..30]]; // Vincenzo Librandi, Jul 15 2011
-
Join[{1},LinearRecurrence[{11,-10},{11,101},20]] (* Harvey P. Dale, May 01 2014 *)
-
a(n)=if(n,10^n+1,1) \\ Charles R Greathouse IV, Oct 28 2014
Original entry on oeis.org
1, 101, 10101, 1011101, 101111101, 10111111101, 1011111111101, 101111111111101, 10111111111111101, 1011111111111111101, 101111111111111111101, 10111111111111111111101, 1011111111111111111111101, 101111111111111111111111101, 10111111111111111111111111101
Offset: 1
n ...... a(n)
1 ....... 1
2 ...... 101
3 ..... 10101
4 .... 1011101
5 ... 101111101
-
Rest[CoefficientList[Series[x(1+10x)(100x^2-10x+1)/((100x-1)(x-1)),{x,0,20}],x]] (* or *) Join[{1,101},Table[FromDigits[Join[{1,0},PadRight[ {},2n+1,1],{0,1}]],{n,0,20}]] (* Harvey P. Dale, Dec 26 2014 *)
Original entry on oeis.org
1, 111, 11011, 1100011, 110000011, 11000000011, 1100000000011, 110000000000011, 11000000000000011, 1100000000000000011, 110000000000000000011, 11000000000000000000011
Offset: 1
n ...... a(n)
1 ....... 1
2 ...... 111
3 ..... 11011
4 .... 1100011
5 ... 110000011
-
LinearRecurrence[{101,-100},{1,111,11011,1100011},20] (* Harvey P. Dale, Nov 26 2019 *)
-
Vec(-x*(10*x-1)*(10*x+1)^2/((x-1)*(100*x-1)) + O(x^100)) \\ Colin Barker, Sep 16 2013
A271527
a(n) = 1000^n + 1.
Original entry on oeis.org
2, 1001, 1000001, 1000000001, 1000000000001, 1000000000000001, 1000000000000000001, 1000000000000000000001, 1000000000000000000000001, 1000000000000000000000000001, 1000000000000000000000000000001, 1000000000000000000000000000000001
Offset: 0
a(n), n>0, is the binary representation of A062395(n)
n ------------------------------------------
0 2........................................2
1 1001.....................................9
2 1000001.................................65
3 1000000001.............................513
4 1000000000001.........................4097
5 1000000000000001.....................32769
6 1000000000000000001.................262145
7 1000000000000000000001.............2097153
8 1000000000000000000000001.........16777217
9 1000000000000000000000000001.....134217729
-
Table[1000^n + 1, {n, 0, 11}]
LinearRecurrence[{1001, -1000}, {2, 1001}, 12]
-
x='x+O('x^99); Vec((2-1001*x)/((1-x)*(1-1000*x))) \\ Altug Alkan, Apr 09 2016
-
for n in range(0,10**4):print(1000**n+1)
# Soumil Mandal, Apr 10 2016
Showing 1-5 of 5 results.
Comments