cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A138836 Non-Mersenne numbers A001348.

Original entry on oeis.org

1, 2, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70
Offset: 1

Views

Author

Omar E. Pol, Apr 05 2008

Keywords

Comments

Numbers that are not in A001348.
a(1) to a(2042) equals A133398, then a(2043)=2048 <> A133398(2043)=2047.

Crossrefs

Programs

  • Python
    from sympy import primepi, prime
    def A138836(n): return n+(k:=int(primepi((n).bit_length())-1))+int(n+k+1>=1<1 else 1 # Chai Wah Wu, Sep 10 2024

A138889 Primes that are not Fermat primes.

Original entry on oeis.org

2, 7, 11, 13, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 263, 269, 271, 277, 281, 283
Offset: 1

Views

Author

Omar E. Pol, Apr 03 2008

Keywords

Comments

Primes that are not members of A019434.

Crossrefs

A218582 Primes which do not divide any Mersenne number M(p) = 2^p - 1 with prime p.

Original entry on oeis.org

2, 5, 11, 13, 17, 19, 29, 37, 41, 43, 53, 59, 61, 67, 71, 73, 79, 83, 97, 101, 103, 107, 109, 113, 131, 137, 139, 149, 151, 157, 163, 173, 179, 181, 191, 193, 197, 199, 211, 227, 229, 239, 241, 251, 257, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337
Offset: 1

Views

Author

Arkadiusz Wesolowski, Nov 03 2012

Keywords

Crossrefs

Complement in primes of A122094. Subsequence of A138837.

Programs

  • Magma
    [p: p in PrimesInInterval(2, 337) | not IsPrime(Modorder(2, p))];
  • Mathematica
    Select[Prime@Range[68], ! PrimeQ@MultiplicativeOrder[2, #] &]

A340466 Primes whose binary expansion contains more 1's than 0's but at least one 0.

Original entry on oeis.org

5, 11, 13, 19, 23, 29, 43, 47, 53, 59, 61, 71, 79, 83, 89, 101, 103, 107, 109, 113, 151, 157, 167, 173, 179, 181, 191, 199, 211, 223, 227, 229, 233, 239, 241, 251, 271, 283, 307, 311, 313, 317, 331, 347, 349, 359, 367, 373, 379, 383, 397, 409, 419, 421, 431
Offset: 1

Views

Author

Ctibor O. Zizka, Jan 08 2021

Keywords

Examples

			71 is in the sequence because 71 is a prime and 71_10 = 1000111_2. '1000111' has four 1's and three 0's.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[400], PrimeQ[#] && First[d = DigitCount[#, 2]] > Last[d] > 0 &] (* Amiram Eldar, Jan 08 2021 *)
  • PARI
    isok(n) = if (isprime(n), my(nb=#binary(n), h=hammingweight(n)); (2*h > nb) && (h < nb)); \\ Michel Marcus, Jan 10 2021
    
  • Python
    from sympy import sieve
    A340466_list = [p for p in sieve.primerange(1,10**4) if len(bin(p))-2 < 2*bin(p).count('1') < 2*len(bin(p))-4] # Chai Wah Wu, Jan 10 2021

Formula

{ A095070 } minus { A000225 }.
{ A095070 } minus { A000668 }.
{ A095070 } intersect { A138837 }.
Previous Showing 11-14 of 14 results.