A206562
Triangle read by rows: T(n,k) = sum of all parts >= k in the last section of the set of partitions of n.
Original entry on oeis.org
1, 3, 2, 5, 3, 3, 11, 8, 4, 4, 15, 10, 8, 5, 5, 31, 24, 16, 10, 6, 6, 39, 28, 22, 16, 12, 7, 7, 71, 56, 40, 31, 19, 14, 8, 8, 94, 72, 58, 40, 32, 22, 16, 9, 9, 150, 120, 90, 72, 52, 37, 25, 18, 10, 10, 196, 154, 124, 94, 74, 54, 42, 28, 20, 11, 11
Offset: 1
Triangle begins:
1;
3, 2;
5, 3, 3;
11, 8, 4, 4;
15, 10, 8, 5, 5;
31, 24, 16, 10, 6, 6;
39, 28, 22, 16, 12, 7, 7;
71, 56, 40, 31, 19, 14, 8, 8;
94, 72, 58, 40, 32, 22, 16, 9, 9;
A194552
Sum of all parts > 1 of all partitions of n.
Original entry on oeis.org
0, 2, 5, 13, 23, 47, 75, 131, 203, 323, 477, 729, 1041, 1517, 2132, 3012, 4134, 5718, 7713, 10453, 13918, 18538, 24357, 32037, 41612, 54040, 69538, 89362, 113925, 145095, 183473, 231697, 290899, 364577, 454632, 566016, 701436, 867800, 1069430, 1315550, 1612595
Offset: 1
-
b:= proc(n, i) option remember; local h, t;
if n<0 or i<1 then [0, 0]
elif n=0 or i=1 then [1, 0]
else h:= b(n, i-1); t:= b(n-i, i);
[h[1]+t[1], h[2]+t[2] +t[1]*i]
fi
end:
a:= n-> b(n, n)[2]:
seq(a(n), n=1..50); # Alois P. Heinz, Dec 14 2011
-
a[n_] := n PartitionsP[n] -Total@Table[PartitionsP[k], {k, 0, n - 1}]; a /@ Range[40] (* George Beck, Oct 23 2014 *)
A194797
Imbalance of the sum of parts of all partitions of n.
Original entry on oeis.org
0, -2, 1, -7, 3, -21, 7, -49, 23, -97, 57, -195, 117, -359, 256, -624, 498, -1086, 909, -1831, 1634, -2986, 2833, -4847, 4728, -7700, 7798, -12026, 12537, -18633, 19745, -28479, 30723, -42955, 47100, -64284, 71136, -95228, 106402, -139718, 157327, -203495
Offset: 1
For n = 6 the illustration of the three views of the shell model with 6 shells shows an imbalance (see below):
------------------------------------------------------
Partitions Tree Table 1.0
of 6. A194805 A135010
------------------------------------------------------
6 6 6 . . . . .
3+3 3 3 . . 3 . .
4+2 4 4 . . . 2 .
2+2+2 2 2 . 2 . 2 .
5+1 1 5 5 . . . . 1
3+2+1 1 3 3 . . 2 . 1
4+1+1 4 1 4 . . . 1 1
2+2+1+1 2 1 2 . 2 . 1 1
3+1+1+1 1 3 3 . . 1 1 1
2+1+1+1+1 2 1 2 . 1 1 1 1
1+1+1+1+1+1 1 1 1 1 1 1 1
------------------------------------------------------
.
. 6 3 4 2 1 3 5
. Table 2.0 . . . . 1 . . Table 2.1
. A182982 . . . 2 1 . . A182983
. . 3 . . 1 2 .
. . . 2 2 1 . .
. . . . . 1
------------------------------------------------------
The sum of all parts > 1 on the left hand side is 34 and the sum of all parts > 1 on the right hand side is 13, so a(6) = -34 + 13 = -21. On the other hand for n = 6 the first n terms of A138880 are 0, 2, 3, 8, 10, 24 thus a(6) = 0-2+3-8+10-24 = -21.
Cf.
A000041,
A002865,
A135010,
A138121,
A138880,
A141285,
A182710,
A182742,
A182743,
A182746,
A182747,
A182982,
A182983,
A182994,
A182995,
A194796,
A194805.
-
with(combinat):
a:= proc(n) option remember;
n *(-1)^n *(numbpart(n-1)-numbpart(n)) +a(n-1)
end: a(0):=0:
seq(a(n), n=1..50); # Alois P. Heinz, Apr 04 2012
-
a[n_] := Sum[(-1)^(k-1)*k*(PartitionsP[k] - PartitionsP[k-1]), {k, 1, n}]; Array[a, 50] (* Jean-François Alcover, Dec 09 2016 *)
A194804
Sum of parts that are visible in one of the three views of the shell model of partitions version "tree" with n shells.
Original entry on oeis.org
0, 1, 4, 8, 15, 23, 40, 59, 92, 137, 202, 285, 418, 577, 802, 1106, 1511, 2019, 2724, 3598, 4755, 6226, 8107, 10462, 13523, 17280, 22029, 27953, 35350, 44416, 55763, 69579, 86634, 107459, 132914, 163768, 201475, 246841, 301822, 368033, 447790, 543206
Offset: 0
Illustration of one of the three views with seven shells:
.
. A182732 <- 6 3 4 2 1 3 5 4 7 -> A182733
. . . . . 1 . . . .
. . . . 2 1 . . . .
. Table 2.0 . 3 . . 1 2 . . . Table 2.1
. . . 2 2 1 . . 3 .
. . . . . 1 2 2 . .
. 1 . . . .
. A182742 A182982 A182743 A182983
. A182992 A182994 A182993 A182995
.
The sum of parts that are visible is 1+1+1+1+1+1+1+2+2+2+2+2+2+2+3+3+3+3+4+4+5+6+7 = 59, so a(7) = 59. Using the formula we have a(7) = 7+24+28 = 59.
Cf.
A002865,
A066186,
A135010,
A138121,
A138880,
A182732,
A182733,
A182742,
A182743,
A182982,
A182983,
A182992-
A182995,
A194803,
A194805.
A182737
Sum of parts in all partitions of 2n+1 that do not contain 1 as a part.
Original entry on oeis.org
0, 3, 10, 28, 72, 154, 312, 615, 1122, 1995, 3465, 5819, 9575, 15498, 24563, 38378, 59202, 90055, 135420, 201630, 297045, 433741, 628155, 902212, 1286348, 1821567, 2562126, 3581655, 4977867, 6879400, 9457318, 12936609, 17610320, 23863323, 32196090
Offset: 0
-
b:= proc(n,i) option remember; local p,q;
if n<0 then [0,0]
elif n=0 then [1,0]
elif i<2 then [0,0]
else p, q:= b(n,i-1), b(n-i,i);
[p[1]+q[1], p[2]+q[2]+q[1]*i]
fi
end:
a:= n-> b(2*n+1,2*n+1)[2]:
seq(a(n), n=0..34); # Alois P. Heinz, Dec 03 2010
-
b[n_, i_] := b[n, i] = Module[{p, q}, Which[n<0, {0, 0}, n == 0, {1, 0}, i<2, {0, 0}, True, {p, q} = {b[n, i-1], b[n-i, i]}; {p[[1]] + q[[1]], p[[2]] + q[[2]] + q[[1]]*i}]]; a[n_] := b[2*n + 1, 2*n+1][[2]]; Table[ a[n], {n, 0, 34}] (* Jean-François Alcover, Nov 11 2015, after Alois P. Heinz *)
A182711
Triangle read by rows in which row n lists the parts > 1 of the last section of the set of partitions of n in an order similar to A138136 but in this case the partitions with the least number of parts are listed first.
Original entry on oeis.org
0, 2, 3, 4, 2, 2, 5, 3, 2, 6, 4, 2, 3, 3, 2, 2, 2, 7, 5, 2, 4, 3, 3, 2, 2, 8, 6, 2, 5, 3, 4, 4, 4, 2, 2, 3, 3, 2, 2, 2, 2, 2, 9, 7, 2, 6, 3, 5, 4, 5, 2, 2, 4, 3, 2, 3, 3, 3, 3, 2, 2, 2, 10, 8, 2, 7, 3, 6, 4, 5, 5, 6, 2, 2, 5, 3, 2, 4, 4, 2, 4, 3, 3, 4, 2, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2
Offset: 1
0,
2,
3,
4,2,2,
5,3,2,
6,4,2,3,3,2,2,2,
7,5,2,4,3,3,2,2,
8,6,2,5,3,4,4,4,2,2,3,3,2,2,2,2,2,
9,7,2,6,3,5,4,5,2,2,4,3,2,3,3,3,3,2,2,2,
10,8,2,7,3,6,4,5,5,6,2,2,5,3,2,4,4,2,4,3,3,4,2,2,2,3,3,2,2,2,2,2,2,2
A139094
Largest part of the n-th row in the integrated diagram of the shell model of partitions.
Original entry on oeis.org
1, 2, 3, 2, 4, 3, 5, 2, 3, 4, 6, 3, 4, 5, 7, 2, 3, 4, 4, 5, 6, 8, 3, 3, 4, 5, 5, 6, 7, 9, 2, 3, 4, 4, 4, 5, 5, 6, 6, 7, 8, 10, 3, 3, 4, 4, 5, 5, 5, 6, 6, 7, 7, 8, 9, 11, 2, 3, 3, 4, 4, 4, 4, 5, 5, 5, 6, 6, 6, 6, 7, 7, 8, 8, 9, 10, 12
Offset: 1
A194450
Vertex number of a rectangular spiral which contains exactly between its edges the successive shells of the partitions of the positive integers.
Original entry on oeis.org
0, 1, 2, 4, 6, 9, 12, 17, 21, 28, 33, 44, 50, 65, 72, 94, 102, 132, 141, 183, 193, 249, 260, 337, 349, 450, 463, 598, 612, 788, 803, 1034, 1050, 1347, 1364, 1749, 1767, 2257, 2276, 2903, 2923, 3715, 3736, 4738, 4760, 6015, 6038, 7613, 7637, 9595
Offset: 0
Cf.
A000041,
A000217,
A006128,
A026905,
A066186,
A135010,
A138121,
A138879,
A138880,
A182703,
A182994,
A182995,
A194451.
A228816
Sum of all parts of all partitions of n that contain 1 as a part.
Original entry on oeis.org
1, 2, 6, 12, 25, 42, 77, 120, 198, 300, 462, 672, 1001, 1414, 2025, 2816, 3927, 5346, 7315, 9800, 13167, 17424, 23046, 30120, 39375, 50908, 65772, 84280, 107822, 136950, 173724, 218944, 275517, 344862, 430850, 535788, 665149, 822206, 1014585, 1247400
Offset: 1
-
Table[Total[Flatten[Select[IntegerPartitions[n],MemberQ[#,1]&]]],{n,40}] (* Harvey P. Dale, Sep 27 2015 *)
Comments