cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 32 results. Next

A139152 a(n) = (n!+5)/5.

Original entry on oeis.org

25, 145, 1009, 8065, 72577, 725761, 7983361, 95800321, 1245404161, 17435658241, 261534873601, 4184557977601, 71137485619201, 1280474741145601, 24329020081766401, 486580401635328001, 10218188434341888001
Offset: 5

Views

Author

Artur Jasinski, Apr 11 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(n! + 5)/5, {n, 5, 30}]

Extensions

Name corrected by Amiram Eldar, Oct 14 2024

A139153 a(n) = (n!+6)/6.

Original entry on oeis.org

2, 5, 21, 121, 841, 6721, 60481, 604801, 6652801, 79833601, 1037836801, 14529715201, 217945728001, 3487131648001, 59281238016001, 1067062284288001, 20274183401472001, 405483668029440001, 8515157028618240001
Offset: 3

Views

Author

Artur Jasinski, Apr 11 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(n! + 6)/6, {n, 3, 30}]

Extensions

Name corrected by Amiram Eldar, Oct 14 2024

A139154 a(n) = (n!+7)/7.

Original entry on oeis.org

721, 5761, 51841, 518401, 5702401, 68428801, 889574401, 12454041601, 186810624001, 2988969984001, 50812489728001, 914624815104001, 17377871486976001, 347557429739520001, 7298706024529920001
Offset: 7

Views

Author

Artur Jasinski, Apr 11 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(n! + 7)/7, {n, 7, 30}]

Extensions

Name corrected by Amiram Eldar, Oct 14 2024

A139155 a(n) = (n!+8)/8.

Original entry on oeis.org

4, 16, 91, 631, 5041, 45361, 453601, 4989601, 59875201, 778377601, 10897286401, 163459296001, 2615348736001, 44460928512001, 800296713216001, 15205637551104001, 304112751022080001, 6386367771463680001
Offset: 4

Views

Author

Artur Jasinski, Apr 11 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(n! + 8)/8, {n, 4, 30}]

Extensions

Name corrected by Amiram Eldar, Oct 14 2024

A139163 a(n) = (prime(n)!+5)/5.

Original entry on oeis.org

25, 1009, 7983361, 1245404161, 71137485619201, 24329020081766401, 5170403347776995328001, 1768352398747940390908723200001, 1644567730835584563545112576000001
Offset: 3

Views

Author

Artur Jasinski, Apr 11 2008

Keywords

Crossrefs

Programs

A139169 a(n)=smallest k >= 1 such that n divides prime(k)!.

Original entry on oeis.org

1, 1, 2, 3, 3, 2, 4, 3, 4, 3, 5, 3, 6, 4, 3, 4, 7, 4, 8, 3, 4, 5, 9, 3, 5, 6, 5, 4, 10, 3, 11, 5, 5, 7, 4, 4, 12, 8, 6, 3, 13, 4, 14, 5, 4, 9, 15, 4, 7, 5, 7, 6, 16, 5, 5, 4, 8, 10, 17, 3, 18, 11, 4, 5, 6, 5, 19, 7, 9, 4, 20, 4, 21, 12, 5, 8, 5, 6, 22, 4, 5, 13, 23, 4, 7, 14, 10, 5, 24, 4, 6, 9, 11, 15
Offset: 1

Views

Author

Artur Jasinski, Apr 11 2008

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(n) local F,m,Q,E,p;
      F:= ifactors(n)[2];
      m:= nops(F);
      Q:= map(t -> t[1],F);
      E:= map(t -> t[2],F);
      p:= max(Q)-1;
      do
        p:= nextprime(p);
        if andmap(i -> add(floor(p/Q[i]^j),j=1..floor(log[Q[i]](p))) >= E[i], [$1..m]) then return p fi;
      od
    end proc:
    f(1):= 2:
    map(numtheory:-pi @ f, [$1..100]); # Robert Israel, Mar 07 2018
  • Mathematica
    a = {}; Do[m = 1; While[ ! IntegerQ[Prime[m]!/n], m++ ]; AppendTo[a, m], {n, 1, 100}]; a
  • PARI
    a(n) = forprime(p=2,, if (!(p! % n), return (primepi(p)))); \\ Michel Marcus, Mar 08 2018

A139171 a(n) = smallest prime number p such that p!/n is an integer.

Original entry on oeis.org

2, 2, 3, 5, 5, 3, 7, 5, 7, 5, 11, 5, 13, 7, 5, 7, 17, 7, 19, 5, 7, 11, 23, 5, 11, 13, 11, 7, 29, 5, 31, 11, 11, 17, 7, 7, 37, 19, 13, 5, 41, 7, 43, 11, 7, 23, 47, 7, 17, 11, 17, 13, 53, 11, 11, 7, 19, 29, 59, 5, 61, 31, 7, 11, 13, 11, 67, 17, 23, 7, 71, 7, 73, 37, 11, 19, 11, 13, 79, 7, 11
Offset: 1

Views

Author

Artur Jasinski, Apr 11 2008

Keywords

Crossrefs

Prime equivalent of Kempner numbers A002034.
For quotients p!/n see A139170.
For indices of primes in this sequence see A139169.

Programs

  • Maple
    f:= proc(n) local F,m,Q,E,p;
      F:= ifactors(n)[2];
      m:= nops(F);
      Q:= map(t -> t[1],F);
      E:= map(t -> t[2],F);
      p:= max(Q)-1;
      do
        p:= nextprime(p);
        if andmap(i -> add(floor(p/Q[i]^j),j=1..floor(log[Q[i]](p))) >= E[i], [$1..m]) then return p fi;
      od
    end proc:
    f(1):= 2:
    map(f, [$1..100]); # Robert Israel, Mar 07 2018
  • Mathematica
    a = {}; Do[m = 1; While[ ! IntegerQ[Prime[m]!/n], m++ ]; AppendTo[a, Prime[m]], {n, 1, 100}]; a
  • PARI
    a(n) = forprime(p=2,, if (!(p! % n), return (p))); \\ Michel Marcus, Mar 08 2018

A139164 a(n) = (prime(n)!+6)/6.

Original entry on oeis.org

2, 21, 841, 6652801, 1037836801, 59281238016001, 20274183401472001, 4308669456480829440001, 1473626998956616992423936000001, 1370473109029653802954260480000001
Offset: 2

Views

Author

Artur Jasinski, Apr 11 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(Prime[n]! + 6)/6, {n, 2, 30}]

Extensions

Offset corrected by Georg Fischer, Apr 04 2022

A139165 a(n)=(prime(n)!+7)/7.

Original entry on oeis.org

721, 5702401, 889574401, 50812489728001, 17377871486976001, 3693145248412139520001, 1263108856248528850649088000001, 1174691236311131831103651840000001
Offset: 4

Views

Author

Artur Jasinski, Apr 11 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(Prime[n]! + 7)/7, {n, 4, 30}]

A139073 Smallest prime number of the form (n+k!)/n.

Original entry on oeis.org

2, 2, 3, 7, 1009, 2, 5702401, 631, 4481, 13, 566092801, 3, 23452949585516450807808000001, 259201, 337, 2521, 3553839003727872684550301886383176323956736000000001, 41
Offset: 1

Views

Author

Artur Jasinski, Apr 07 2008

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; Do[ k = 1; While[ ! PrimeQ[ (k! + n)/n ], k++ ]; AppendTo[ a, (k! + n)/n ], {n, 1, 100} ]; a [Corrected May 06 2008]
  • PARI
    a(n)=my(k,t);until(denominator(t=k++!/n+1)==1&&ispseudoprime(t),);t \\ Charles R Greathouse IV, Jul 19 2011

Formula

a(n) = (n + A139072(n)!)/n. - Amiram Eldar, Oct 14 2024
Previous Showing 21-30 of 32 results. Next