cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A299645 Numbers of the form m*(8*m + 5), where m is an integer.

Original entry on oeis.org

0, 3, 13, 22, 42, 57, 87, 108, 148, 175, 225, 258, 318, 357, 427, 472, 552, 603, 693, 750, 850, 913, 1023, 1092, 1212, 1287, 1417, 1498, 1638, 1725, 1875, 1968, 2128, 2227, 2397, 2502, 2682, 2793, 2983, 3100, 3300, 3423, 3633, 3762, 3982, 4117, 4347, 4488, 4728, 4875
Offset: 1

Views

Author

Bruno Berselli, Feb 26 2018

Keywords

Comments

Equivalently, numbers k such that 32*k + 25 is a square. This means that 4*a(n) + 3 is a triangular number.
Interleaving of A139277 and A139272 (without 0).

Crossrefs

Subsequence of A011861, A047222.
Cf. numbers of the form m*(8*m + h): A154260 (h=1), A014494 (h=2), A274681 (h=3), A046092 (h=4), this sequence (h=5), 2*A074377 (h=6), A274979 (h=7).

Programs

  • GAP
    List([1..50], n -> (8*n*(n-1)-(2*n-1)*(-1)^n-1)/4);
    
  • Julia
    [div((8n*(n-1)-(2n-1)*(-1)^n-1), 4) for n in 1:50] # Peter Luschny, Feb 27 2018
  • Magma
    [(8*n*(n-1)-(2*n-1)*(-1)^n-1)/4: n in [1..50]];
    
  • Maple
    seq((exp(I*Pi*x)*(1-2*x)+8*(x-1)*x-1)/4, x=1..50); # Peter Luschny, Feb 27 2018
  • Mathematica
    Table[(8 n (n - 1) - (2 n - 1) (-1)^n - 1)/4, {n, 1, 50}]
  • Maxima
    makelist((8*n*(n-1)-(2*n-1)*(-1)^n-1)/4, n, 1, 50);
    
  • PARI
    vector(50, n, nn; (8*n*(n-1)-(2*n-1)*(-1)^n-1)/4)
    
  • PARI
    concat(0, Vec(x^2*(3 + 10*x + 3*x^2)/((1 - x)^3*(1 + x)^2) + O(x^60))) \\ Colin Barker, Feb 27 2018
    
  • Python
    [(8*n*(n-1)-(2*n-1)*(-1)**n-1)/4 for n in range(1, 60)]
    
  • Python
    def A299645(n): return (n>>1)*((n<<2)+(1 if n&1 else -5)) # Chai Wah Wu, Mar 11 2025
    
  • Sage
    [(8*n*(n-1)-(2*n-1)*(-1)^n-1)/4 for n in (1..50)]
    

Formula

O.g.f.: x^2*(3 + 10*x + 3*x^2)/((1 - x)^3*(1 + x)^2).
E.g.f.: (1 + 2*x - (1 - 8*x^2)*exp(2*x))*exp(-x)/4.
a(n) = a(-n+1) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5).
a(n) = (8*n*(n - 1) - (2*n - 1)*(-1)^n - 1)/4 = (2*n + (-1)^n - 1)*(4*n - 3*(-1)^n - 2)/4. Therefore, 3 and 13 are the only prime numbers in this sequence.
a(n) + a(n+1) = 4*n^2 for even n, otherwise a(n) + a(n+1) = 4*n^2 - 1.
From Amiram Eldar, Mar 18 2022: (Start)
Sum_{n>=2} 1/a(n) = 8/25 + (sqrt(2)-1)*Pi/5.
Sum_{n>=2} (-1)^n/a(n) = 8*log(2)/5 - sqrt(2)*log(2*sqrt(2)+3)/5 - 8/25. (End)
a(n) = (n-1)*(4*n+1)/2 if n is odd and a(n) = n*(4*n-5)/2 if n is even. - Chai Wah Wu, Mar 11 2025

A383464 a(n) = 8*n^2 - 5*n + 1.

Original entry on oeis.org

1, 4, 23, 58, 109, 176, 259, 358, 473, 604, 751, 914, 1093, 1288, 1499, 1726, 1969, 2228, 2503, 2794, 3101, 3424, 3763, 4118, 4489, 4876, 5279, 5698, 6133, 6584, 7051, 7534, 8033, 8548, 9079, 9626, 10189, 10768, 11363, 11974, 12601, 13244, 13903, 14578, 15269
Offset: 0

Views

Author

N. J. A. Sloane, Jun 26 2025

Keywords

Comments

This is equal to A139272(n) + 1, but has its own entry because of an important geometrical interpretation.
Definition: A k-legged Wu is a pencil of k semi-infinite lines originating from a common point.
A 2-legged Wu is a long-legged V (see A130883), and a 3-legged Wu is a long-legged Wu as in A140064.
Theorem (David Cutler, Jonathan Pei, and Edward Xiong, Jun 24 2025): a(n) is the maximum number of regions in the plane that can be formed from n copies of a 4-legged Wu.
Proof: See "Cutting a pancake with an exotic knife".

References

  • David O. H. Cutler and Neil J. A. Sloane, Cutting a pancake with an exotic knife, Paper in preparation, Sep 05 2025

Crossrefs

Programs

  • Magma
    I:=[1, 4, 23]; [n le 3 select I[n] else 3*Self(n-1)-3* Self(n-2)+Self(n-3): n in [1..40]]; // Vincenzo Librandi, Jun 27 2025
  • Mathematica
    LinearRecurrence[{3,-3,1},{1,4,23},50] (* Vincenzo Librandi, Jun 27 2025 *)

Formula

G.f.: (1 + x + 14*x^2)/(1 - x)^3.
E.g.f.: exp(x)*(1 + 3*x + 8*x^2). - Stefano Spezia, Jun 30 2025
Previous Showing 11-12 of 12 results.