cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-22 of 22 results.

A186235 Total Wiener index of double-star trees with n nodes.

Original entry on oeis.org

10, 18, 57, 82, 169, 220, 374, 460, 700, 830, 1175, 1358, 1827, 2072, 2684, 3000, 3774, 4170, 5125, 5610, 6765, 7348, 8722, 9412, 11024, 11830, 13699, 14630, 16775, 17840, 20280, 21488, 24242, 25602, 28689, 30210, 33649, 35340, 39150, 41020
Offset: 4

Views

Author

Washington Bomfim, Feb 15 2011

Keywords

Comments

For the trees of a given order, it appears that the Wiener indexes are very close. For n=8, the indexes are 54, 57, and 58.
The second Bomfim link refers to formulas of the total Wiener index, and the average Wiener index of those trees.

Examples

			The first Bomfim link shows a way to find a(8).
		

Crossrefs

Programs

  • Magma
    [ IsEven(n) select (n-2)*(2*n-3)*(7*n-4)/24 else (n-3)*(n-1)*(7*n-8)/12: n in [4..43] ]; // Bruno Berselli, Feb 17 2011
  • Mathematica
    a[n_]:= a[n] = -a[n-7] + a[n-6] + 3a[n-5] - 3a[n-4] - 3a[n-3] + 3a[n-2] + a[n-1]; a[0]=-1; a[1]=0; a[2]=0; a[3]=0; a[4]=10; a[5]=18; a[6]=57; a /@ Range[4, 43] (* Jean-François Alcover, Jun 01 2011, after recurrence signature *)
    LinearRecurrence[{1,3,-3,-3,3,1,-1},{10,18,57,82,169,220,374},40] (* Harvey P. Dale, Mar 25 2013 *)
  • PARI
    for(n=4,43,if(n%2,print1((1/12)*(7*n^3+53*n)-3*n^2-2,", "), print1((1/24)*(14*n^3-57*n^2+70*n)-1,", ")))
    

Formula

G.f.: x^4*(10+8*x+9*x^2+x^3)/((1+x)^3*(1-x)^4). Also a(n)=(n*(28*n^2-129*n+176)+3*(5*n^2-12*n+8)*(-1)^n-72)/48. - Bruno Berselli, Feb 15 2011
For even n, a(n)=(14*n^3-57*n^2+70*n)/24-1, otherwise a(n)=(7*n^3+53*n)/12-3*n^2-2.
With d=floor((n-2)/2), a(n)=d((n-2)*(n-1)+n*(d+3)/2-d^2/3-3*d/2-13/6).

A337698 Number of compositions of n that are not strictly increasing.

Original entry on oeis.org

0, 0, 1, 2, 6, 13, 28, 59, 122, 248, 502, 1012, 2033, 4078, 8170, 16357, 32736, 65498, 131026, 262090, 524224, 1048500, 2097063, 4194200, 8388486, 16777074, 33554267, 67108672, 134217506, 268435200, 536870616, 1073741484, 2147483258, 4294966848, 8589934080
Offset: 0

Views

Author

Gus Wiseman, Oct 06 2020

Keywords

Examples

			The a(2) = 1 through a(5) = 13 compositions:
  (11)  (21)   (22)    (32)
        (111)  (31)    (41)
               (112)   (113)
               (121)   (122)
               (211)   (131)
               (1111)  (212)
                       (221)
                       (311)
                       (1112)
                       (1121)
                       (1211)
                       (2111)
                       (11111)
		

Crossrefs

A000009 counts the complement.
A047967 is the unordered version.
A056823 is the weak version.
A140106 counts the unordered case of length 3.
A242771 counts the case of length 3.
A333255 is the complement of a ranking sequence (using standard compositions A066099) for these compositions.
A337481 counts these compositions that are not strictly decreasing.
A337482 counts these compositions that are not weakly decreasing.
A001523 counts unimodal compositions, with complement A115981.
A007318 and A097805 count compositions by length.
A218004 counts strictly increasing or weakly decreasing compositions.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],!Less@@#&]],{n,0,15}]

Formula

a(n) = 2^(n-1) - A000009(n) for n > 0.
Previous Showing 21-22 of 22 results.