A376855
Position of first 0 in the n-th differences of the noncomposite numbers (A008578), or 0 if it does not appear.
Original entry on oeis.org
0, 0, 1, 8, 70, 14, 48, 59, 10, 44, 3554, 101, 7020, 14083, 68098, 14527, 149678, 2698, 481055, 979720, 631895, 29812, 25340979, 50574255, 7510844, 210829338, 67248862, 224076287, 910615648, 931510270, 452499645, 2880203723, 396680866, 57954439971, 77572822441, 35394938649
Offset: 0
The third differences of the noncomposite numbers begin: 1, -1, 2, -4, 4, -4, 4, 0, -6, 8, ... so a(3) = 8.
For firsts instead of positions of zeros we have
A030016, modern
A007442.
For row-sums instead of zero-positions we have
A376683, modern
A140119.
For composite instead of noncomposite we have
A377037.
For squarefree instead of noncomposite we have
A377042, nonsquarefree
A377050.
For prime-power instead of noncomposite we have
A377055.
-
nn=10000;
u=Table[Differences[Select[Range[nn],#==1||PrimeQ[#]&],k],{k,2,16}];
mnrm[s_]:=If[Min@@s==1,mnrm[DeleteCases[s-1,0]]+1,0];
m=Table[Position[u[[k]],0][[1,1]],{k,mnrm[Union[First/@Position[u,0]]]}]
A377035
Antidiagonal-sums of the absolute value of the array A377033(n,k) = n-th term of the k-th differences of the composite numbers (A002808).
Original entry on oeis.org
4, 8, 10, 12, 14, 18, 21, 28, 34, 40, 47, 74, 96, 110, 138, 286, 715, 2393, 8200, 25731, 72468, 184716, 431575, 934511, 1892267, 3605315, 6494464, 11116110, 18134549, 28348908, 42701927, 62290660, 88313069, 120999433, 159769475, 221775851, 483797879
Offset: 1
The fourth antidiagonal of A377033 is (9, 1, -1, -1), so a(4) = 12.
The version for prime instead of composite is
A376681, absolute version of
A140119.
This is the antidiagonal-sums of absolute value of the array
A377033.
For squarefree instead of composite we have
A377040, absolute version of
A377039.
For nonsquarefree instead of composite we have
A377048, absolute version of
A377047.
For prime-power instead of composite we have
A377053, absolute version of
A377052.
-
q=Select[Range[120],CompositeQ];
t=Table[Sum[(-1)^(j-k)*Binomial[j,k]*q[[i+k]],{k,0,j}],{j,0,Length[q]/2},{i,Length[q]/2}];
Total/@Table[Abs[t[[j,i-j+1]]],{i,Length[q]/2},{j,i}]
A377039
Antidiagonal-sums of the array A377038(n,k) = n-th term of k-th differences of squarefree numbers (A005117).
Original entry on oeis.org
1, 3, 4, 9, 1, 18, 8, -9, 106, -237, 595, -1170, 2276, -3969, 6640, -10219, 14655, -18636, 19666, -12071, -13056, 69157, -171441, 332756, -552099, 798670, -982472, 901528, -116173, -2351795, 8715186, -23856153, 57926066, -130281007, 273804642, -535390274
Offset: 0
The fourth antidiagonal of A377038 is (6,1,-1,-2,-3), so a(4) = 1.
These are the antidiagonal-sums of
A377038.
For nonsquarefree numbers we have
A377047.
A073576 counts integer partitions into squarefree numbers, factorizations
A050320.
Cf.
A007674,
A053797,
A053806,
A061398,
A072284,
A075526,
A076259,
A120992,
A376311,
A376590,
A376591,
A377046.
-
nn=20;
t=Table[Take[Differences[NestList[NestWhile[#+1&,#+1,!SquareFreeQ[#]&]&,1,2*nn],k],nn],{k,0,nn}];
Total/@Table[t[[j,i-j+1]],{i,nn},{j,i}]
A377052
Antidiagonal-sums of the array A377051(n,k) = n-th term of k-th differences of powers of primes.
Original entry on oeis.org
1, 3, 4, 5, 6, 13, -6, 45, -50, 113, -98, 73, 274, -1159, 3563, -8707, 19024, -36977, 64582, -98401, 121436, -81961, -147383, 860871, -2709964, 7110655, -17077217, 38873213, -85085216, 179965720, -367884935, 725051361, -1372311916, 2481473639, -4257624155
Offset: 0
The sixth antidiagonal of A377051 is (8, 1, -1, -2, -3, -4, -5), so a(6) = -6.
These are the antidiagonal-sums of
A377051.
For first zero-positions we have
A377055.
Cf.
A000961,
A025475,
A053707,
A057820,
A093555,
A174965,
A246655,
A361102,
A376340,
A376596,
A376598.
-
nn=20;
t=Table[Differences[NestList[NestWhile[#+1&, #+1,!PrimePowerQ[#]&]&,1,2*nn],k],{k,0,nn}];
Total/@Table[t[[j,i-j+1]],{i,nn},{j,i}]
A377056
Antidiagonal-sums of the array A175804(n,k) = n-th term of k-th differences of partition numbers (A000041).
Original entry on oeis.org
1, 1, 4, 3, 11, 2, 36, -27, 142, -207, 595, -1066, 2497, -4878, 10726, -22189, 48383, -103318, 224296, -480761, 1030299, -2186942, 4626313, -9740648, 20492711, -43109372, 90843475, -191769296, 405528200, -858373221, 1817311451, -3845483855, 8129033837
Offset: 0
Antidiagonal i + j = 3 of A175804 is (3, 1, 0, -1), so a(3) = 3.
These are the antidiagonal-sums of
A175804.
First column of the same array is
A281425.
-
nn=20;
t=Table[Differences[PartitionsP/@Range[0,2nn],k],{k,0,nn}];
Total/@Table[t[[j,i-j+1]],{i,nn},{j,i}]
A378970
Antidiagonal-sums of the array A378622(n,k) = n-th term of k-th differences of strict partition numbers (A000009).
Original entry on oeis.org
1, 1, 1, 5, -4, 18, -20, 47, -56, 110, -153, 309, -532, 1045, -1768, 2855, -3620, 2928, 2927, -20371, 62261, -148774, 314112, -613835, 1155936, -2175658, 4244218, -8753316, 19006746, -42471491, 95234915, -210395017, 453414314, -949507878, 1931940045
Offset: 0
Antidiagonal 4 of A378622 is (2, 0, -1, -2, -3), so a(4) = -4.
Row-sums of the triangular form of
A378622. See also:
-
A175804 is the version for partitions.
-
A293467 gives the first column (up to sign).
-
A377285 gives position of first zero in each row.
-
nn=30;
t=Table[Take[Differences[PartitionsQ/@Range[0,2nn],k],nn],{k,0,nn}];
Total/@Table[t[[j,i-j+1]],{i,nn/2},{j,i}]
A377036
First term of the n-th differences of the composite numbers. Inverse zero-based binomial transform of A002808.
Original entry on oeis.org
4, 2, 0, -1, 2, -2, 0, 4, -8, 8, 0, -16, 32, -32, -1, 78, -233, 687, -2363, 8160, -25670, 72352, -184451, 430937, -933087, 1888690, -3597221, 6479696, -11086920, 18096128, -28307626, 42644791, -62031001, 86466285, -110902034, 110907489, -52325, -483682930
Offset: 0
The version for prime instead of composite is
A007442.
For noncomposite numbers we have
A030016.
This is the first column (n=1) of
A377033.
For squarefree instead of composite we have
A377041, nonsquarefree
A377049.
For prime-power instead of composite we have
A377054.
Cf:
A018252,
A065310,
A065890,
A140119,
A173390,
A333214,
A376602 (zero),
A376603 (nonzero),
A376651 (positive),
A376652 (negative),
A376680.
-
q=Select[Range[100],CompositeQ];
t=Table[Sum[(-1)^(j-k)*Binomial[j,k]*q[[1+k]],{k,0,j}],{j,0,Length[q]-1}]
A378971
Antidiagonal-sums of absolute value of the array A378622(n,k) = n-th term of k-th differences of strict partition numbers (A000009).
Original entry on oeis.org
1, 1, 1, 5, 8, 18, 30, 47, 70, 110, 177, 309, 574, 1063, 1892, 3107, 4598, 6166, 8737, 20603, 62457, 149132, 314116, 614093, 1155968, 2176048, 4244322, 8753864, 19006756, 42472117, 95235017, 210396059, 453414950, 949510166, 1931941261, 3826650257, 7400745917
Offset: 0
Antidiagonal 4 of A378622 is (2, 0, -1, -2, -3), so a(4) = 8.
Row-sums of the triangular form of
A378622. See also:
-
A175804 is the version for partitions.
-
A293467 gives the first column (up to sign).
-
A377285 gives position of first zero in each row.
-
nn=30;
t=Table[Take[Differences[PartitionsQ/@Range[0,2nn],k],nn],{k,0,nn}];
Total/@Abs/@Table[t[[j,i-j+1]],{i,nn/2},{j,i}]
A082594
Constant term when a polynomial of degree n-1 is fitted to the first n primes.
Original entry on oeis.org
2, 1, 2, 3, 6, 15, 38, 91, 206, 443, 900, 1701, 2914, 4303, 4748, 1081, -14000, -55335, -150394, -346163, -716966, -1369429, -2432788, -4002993, -5964748, -7525017, -6123026, 4900093, 40900520, 134308945, 348584680, 798958751, 1678213244, 3277458981, 5972923998, 10110994307
Offset: 1
For n=4, we fit a cubic through the 4 points (1,2),(2,3),(3,5),(4,7) to obtain a(4) = 3.
- J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, p. 80
-
Table[Coefficient[Expand[InterpolatingPolynomial[Prime[Range[n]], x]], x, 0], {n, 50}]
Diff[lst_List] := Table[lst[[i+1]]-lst[[i]], {i, Length[lst]-1}]; n=50; dt=Table[{}, {n}]; dt[[1]]=Prime[Range[n]]; Do[dt[[i]]=Diff[dt[[i-1]]], {i, 2, n}]; Table[s=dt[[i, 1]]; Do[s=dt[[i-j, 1]]-s, {j, i-1}]; s, {i, n}]
-
dual(v:vec)=vector(#v,i,-sum(j=0,i-1,binomial(i-1,j)*(-1)^j*v[j+1]))
dual(concat(0,primes(100)))[2..101] \\ Charles R Greathouse IV, Oct 03 2013
-
{a(n) = sum(k=0, n-1, sum(i=0, k, binomial(k, i) * (-1)^i * prime(i+1)))}; /* Michael Somos, Dec 02 2020 */
A378621
Antidiagonal-sums of absolute value of the array A175804(n,k) = n-th term of k-th differences of partition numbers (A000041).
Original entry on oeis.org
1, 1, 4, 5, 11, 16, 36, 65, 142, 285, 595, 1210, 2497, 5134, 10726, 22637, 48383, 104066, 224296, 481985, 1030299, 2188912, 4626313, 9743750, 20492711, 43114180, 90843475, 191776658, 405528200, 858384333, 1817311451, 3845500427, 8129033837, 17162815092
Offset: 0
Antidiagonal i + j = 3 of A175804 is (3, 1, 0, -1), so a(3) = 5.
These are the antidiagonal-sums of the absolute value of
A175804.
First column of the same array is
A281425.
-
nn=30;
q=Table[PartitionsP[n],{n,0,nn}];
t=Table[Sum[(-1)^(j-k)*Binomial[j,k]*q[[i+k]],{k,0,j}],{j,0,Length[q]/2},{i,Length[q]/2}]
Total/@Abs/@Table[t[[j,i-j+1]],{i,nn/2},{j,i}]
Comments