cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 23 results. Next

A376855 Position of first 0 in the n-th differences of the noncomposite numbers (A008578), or 0 if it does not appear.

Original entry on oeis.org

0, 0, 1, 8, 70, 14, 48, 59, 10, 44, 3554, 101, 7020, 14083, 68098, 14527, 149678, 2698, 481055, 979720, 631895, 29812, 25340979, 50574255, 7510844, 210829338, 67248862, 224076287, 910615648, 931510270, 452499645, 2880203723, 396680866, 57954439971, 77572822441, 35394938649
Offset: 0

Views

Author

Gus Wiseman, Oct 15 2024

Keywords

Examples

			The third differences of the noncomposite numbers begin: 1, -1, 2, -4, 4, -4, 4, 0, -6, 8, ... so a(3) = 8.
		

Crossrefs

For firsts instead of positions of zeros we have A030016, modern A007442.
These are the first zero-positions in A376682, modern A376678.
For row-sums instead of zero-positions we have A376683, modern A140119.
For absolute row-sums we have A376684, modern A376681.
For composite instead of noncomposite we have A377037.
For squarefree instead of noncomposite we have A377042, nonsquarefree A377050.
For prime-power instead of noncomposite we have A377055.
A000040 lists the modern primes, differences A001223, seconds A036263.
A008578 lists the noncomposite numbers, first differences A075526.

Programs

  • Mathematica
    nn=10000;
    u=Table[Differences[Select[Range[nn],#==1||PrimeQ[#]&],k],{k,2,16}];
    mnrm[s_]:=If[Min@@s==1,mnrm[DeleteCases[s-1,0]]+1,0];
    m=Table[Position[u[[k]],0][[1,1]],{k,mnrm[Union[First/@Position[u,0]]]}]

Extensions

a(16)-a(21) from Alois P. Heinz, Oct 18 2024
a(22)-a(35) from Lucas A. Brown, Nov 03 2024

A377035 Antidiagonal-sums of the absolute value of the array A377033(n,k) = n-th term of the k-th differences of the composite numbers (A002808).

Original entry on oeis.org

4, 8, 10, 12, 14, 18, 21, 28, 34, 40, 47, 74, 96, 110, 138, 286, 715, 2393, 8200, 25731, 72468, 184716, 431575, 934511, 1892267, 3605315, 6494464, 11116110, 18134549, 28348908, 42701927, 62290660, 88313069, 120999433, 159769475, 221775851, 483797879
Offset: 1

Views

Author

Gus Wiseman, Oct 18 2024

Keywords

Examples

			The fourth antidiagonal of A377033 is (9, 1, -1, -1), so a(4) = 12.
		

Crossrefs

The version for prime instead of composite is A376681, absolute version of A140119.
The version for noncomposite is A376684, absolute version of A376683.
This is the antidiagonal-sums of absolute value of the array A377033.
For squarefree instead of composite we have A377040, absolute version of A377039.
For nonsquarefree instead of composite we have A377048, absolute version of A377047.
For prime-power instead of composite we have A377053, absolute version of A377052.
Other arrays of differences: A095195 (prime), A376682 (noncomposite), A377033 (composite), A377038 (squarefree), A377046 (nonsquarefree), A377051 (prime-power).
A000040 lists the primes, differences A001223, seconds A036263.
A002808 lists the composite numbers, differences A073783, seconds A073445.
A008578 lists the noncomposites, differences A075526.
Cf. A018252, A065310, A065890, A333254, A376602 (zero), A376603 (nonzero), A376651 (positive), A376652 (negative), A376680, A377036.

Programs

  • Mathematica
    q=Select[Range[120],CompositeQ];
    t=Table[Sum[(-1)^(j-k)*Binomial[j,k]*q[[i+k]],{k,0,j}],{j,0,Length[q]/2},{i,Length[q]/2}];
    Total/@Table[Abs[t[[j,i-j+1]]],{i,Length[q]/2},{j,i}]

A377039 Antidiagonal-sums of the array A377038(n,k) = n-th term of k-th differences of squarefree numbers (A005117).

Original entry on oeis.org

1, 3, 4, 9, 1, 18, 8, -9, 106, -237, 595, -1170, 2276, -3969, 6640, -10219, 14655, -18636, 19666, -12071, -13056, 69157, -171441, 332756, -552099, 798670, -982472, 901528, -116173, -2351795, 8715186, -23856153, 57926066, -130281007, 273804642, -535390274
Offset: 0

Views

Author

Gus Wiseman, Oct 18 2024

Keywords

Comments

These are row-sums of the triangle-version of A377038.

Examples

			The fourth antidiagonal of A377038 is (6,1,-1,-2,-3), so a(4) = 1.
		

Crossrefs

The version for primes is A140119, noncomposites A376683, composites A377034.
These are the antidiagonal-sums of A377038.
The absolute version is A377040.
For nonsquarefree numbers we have A377047.
For prime-powers we have A377052.
A000040 lists the primes, differences A001223, seconds A036263.
A005117 lists the squarefree numbers, complement A013929 (differences A078147).
A073576 counts integer partitions into squarefree numbers, factorizations A050320.
A377041 gives first column of A377038, for primes A007442 or A030016.
A377042 gives first position of 0 in each row of A377038.

Programs

  • Mathematica
    nn=20;
    t=Table[Take[Differences[NestList[NestWhile[#+1&,#+1,!SquareFreeQ[#]&]&,1,2*nn],k],nn],{k,0,nn}];
    Total/@Table[t[[j,i-j+1]],{i,nn},{j,i}]

A377052 Antidiagonal-sums of the array A377051(n,k) = n-th term of k-th differences of powers of primes.

Original entry on oeis.org

1, 3, 4, 5, 6, 13, -6, 45, -50, 113, -98, 73, 274, -1159, 3563, -8707, 19024, -36977, 64582, -98401, 121436, -81961, -147383, 860871, -2709964, 7110655, -17077217, 38873213, -85085216, 179965720, -367884935, 725051361, -1372311916, 2481473639, -4257624155
Offset: 0

Views

Author

Gus Wiseman, Oct 22 2024

Keywords

Comments

These are the row-sums of the triangle-version of A377051.

Examples

			The sixth antidiagonal of A377051 is (8, 1, -1, -2, -3, -4, -5), so a(6) = -6.
		

Crossrefs

The version for primes is A140119, noncomposites A376683, composites A377034.
For squarefree numbers we have A377039, nonsquarefree A377047.
These are the antidiagonal-sums of A377051.
The unsigned version is A377053.
For leaders we have A377054, for primes A007442 or A030016.
For first zero-positions we have A377055.
A version for partitions is A377056, cf. A175804, A053445, A281425, A320590.
A000040 lists the primes, differences A001223, seconds A036263.
A001597 lists perfect-powers, complement A007916.
A023893 and A023894 count integer partitions into prime-powers, factorizations A000688.

Programs

  • Mathematica
    nn=20;
    t=Table[Differences[NestList[NestWhile[#+1&, #+1,!PrimePowerQ[#]&]&,1,2*nn],k],{k,0,nn}];
    Total/@Table[t[[j,i-j+1]],{i,nn},{j,i}]

A377056 Antidiagonal-sums of the array A175804(n,k) = n-th term of k-th differences of partition numbers (A000041).

Original entry on oeis.org

1, 1, 4, 3, 11, 2, 36, -27, 142, -207, 595, -1066, 2497, -4878, 10726, -22189, 48383, -103318, 224296, -480761, 1030299, -2186942, 4626313, -9740648, 20492711, -43109372, 90843475, -191769296, 405528200, -858373221, 1817311451, -3845483855, 8129033837
Offset: 0

Views

Author

Gus Wiseman, Dec 12 2024

Keywords

Examples

			Antidiagonal i + j = 3 of A175804 is (3, 1, 0, -1), so a(3) = 3.
		

Crossrefs

For primes we have A140119 or A376683, unsigned A376681 or A376684.
These are the antidiagonal-sums of A175804.
First column of the same array is A281425.
For composites we have A377034, unsigned A377035.
For squarefree numbers we have A377039, unsigned A377040.
For nonsquarefree numbers we have A377049, unsigned A377048.
For prime powers we have A377052, unsigned A377053.
The unsigned version is A378621.
The version for strict partitions is A378970 (row-sums of A378622), unsigned A378971.
A000009 counts strict integer partitions, differences A087897, A378972.
A000041 counts integer partitions, differences A002865, A053445.

Programs

  • Mathematica
    nn=20;
    t=Table[Differences[PartitionsP/@Range[0,2nn],k],{k,0,nn}];
    Total/@Table[t[[j,i-j+1]],{i,nn},{j,i}]

A378970 Antidiagonal-sums of the array A378622(n,k) = n-th term of k-th differences of strict partition numbers (A000009).

Original entry on oeis.org

1, 1, 1, 5, -4, 18, -20, 47, -56, 110, -153, 309, -532, 1045, -1768, 2855, -3620, 2928, 2927, -20371, 62261, -148774, 314112, -613835, 1155936, -2175658, 4244218, -8753316, 19006746, -42471491, 95234915, -210395017, 453414314, -949507878, 1931940045
Offset: 0

Views

Author

Gus Wiseman, Dec 14 2024

Keywords

Examples

			Antidiagonal 4 of A378622 is (2, 0, -1, -2, -3), so a(4) = -4.
		

Crossrefs

For primes we have A140119 or A376683, absolute value A376681 or A376684.
For composites we have A377034, absolute value A377035.
For squarefree numbers we have A377039, absolute value A377040.
For nonsquarefree numbers we have A377047, absolute value A377048.
For prime powers we have A377052, absolute value A377053.
For partition numbers we have A377056, absolute value A378621.
Row-sums of the triangular form of A378622. See also:
- A175804 is the version for partitions.
- A293467 gives the first column (up to sign).
- A377285 gives position of first zero in each row.
The unsigned version is A378971.
A000009 counts strict integer partitions, differences A087897, A378972.
A000041 counts integer partitions, differences A002865, A053445.

Programs

  • Mathematica
    nn=30;
    t=Table[Take[Differences[PartitionsQ/@Range[0,2nn],k],nn],{k,0,nn}];
    Total/@Table[t[[j,i-j+1]],{i,nn/2},{j,i}]

A377036 First term of the n-th differences of the composite numbers. Inverse zero-based binomial transform of A002808.

Original entry on oeis.org

4, 2, 0, -1, 2, -2, 0, 4, -8, 8, 0, -16, 32, -32, -1, 78, -233, 687, -2363, 8160, -25670, 72352, -184451, 430937, -933087, 1888690, -3597221, 6479696, -11086920, 18096128, -28307626, 42644791, -62031001, 86466285, -110902034, 110907489, -52325, -483682930
Offset: 0

Views

Author

Gus Wiseman, Oct 18 2024

Keywords

Crossrefs

The version for prime instead of composite is A007442.
For noncomposite numbers we have A030016.
This is the first column (n=1) of A377033.
For row-sums we have A377034, absolute version A377035.
First zero positions are A377037, cf. A376678, A376855, A377042, A377050, A377055.
For squarefree instead of composite we have A377041, nonsquarefree A377049.
For prime-power instead of composite we have A377054.
Other arrays of differences: A095195 (prime), A376682 (noncomposite), A377033 (composite), A377038 (squarefree), A377046 (nonsquarefree), A377051 (prime-power).
A000040 lists the primes, differences A001223, seconds A036263.
A002808 lists the composite numbers, differences A073783, seconds A073445.
A008578 lists the noncomposites, differences A075526.
Cf: A018252, A065310, A065890, A140119, A173390, A333214, A376602 (zero), A376603 (nonzero), A376651 (positive), A376652 (negative), A376680.

Programs

  • Mathematica
    q=Select[Range[100],CompositeQ];
    t=Table[Sum[(-1)^(j-k)*Binomial[j,k]*q[[1+k]],{k,0,j}],{j,0,Length[q]-1}]

Formula

The inverse zero-based binomial transform of a sequence (q(0), q(1), ..., q(m)) is the sequence p given by:
p(j) = sum_{k=0..j} (-1)^(j-k) binomial(j,k) q(k)

A378971 Antidiagonal-sums of absolute value of the array A378622(n,k) = n-th term of k-th differences of strict partition numbers (A000009).

Original entry on oeis.org

1, 1, 1, 5, 8, 18, 30, 47, 70, 110, 177, 309, 574, 1063, 1892, 3107, 4598, 6166, 8737, 20603, 62457, 149132, 314116, 614093, 1155968, 2176048, 4244322, 8753864, 19006756, 42472117, 95235017, 210396059, 453414950, 949510166, 1931941261, 3826650257, 7400745917
Offset: 0

Views

Author

Gus Wiseman, Dec 14 2024

Keywords

Examples

			Antidiagonal 4 of A378622 is (2, 0, -1, -2, -3), so a(4) = 8.
		

Crossrefs

For primes we have A376681 or A376684, signed version A140119 or A376683.
For composites we have A377035, signed version A377034.
For squarefree numbers we have A377040, signed version A377039.
For nonsquarefree numbers we have A377048, signed version A377049.
For prime powers we have A377053, signed version A377052.
For partition numbers we have A378621, signed version A377056.
Row-sums of the triangular form of A378622. See also:
- A175804 is the version for partitions.
- A293467 gives the first column (up to sign).
- A377285 gives position of first zero in each row.
The signed version is A378970.
A000009 counts strict integer partitions, differences A087897, A378972.
A000041 counts integer partitions, differences A002865, A053445.

Programs

  • Mathematica
    nn=30;
    t=Table[Take[Differences[PartitionsQ/@Range[0,2nn],k],nn],{k,0,nn}];
    Total/@Abs/@Table[t[[j,i-j+1]],{i,nn/2},{j,i}]

A082594 Constant term when a polynomial of degree n-1 is fitted to the first n primes.

Original entry on oeis.org

2, 1, 2, 3, 6, 15, 38, 91, 206, 443, 900, 1701, 2914, 4303, 4748, 1081, -14000, -55335, -150394, -346163, -716966, -1369429, -2432788, -4002993, -5964748, -7525017, -6123026, 4900093, 40900520, 134308945, 348584680, 798958751, 1678213244, 3277458981, 5972923998, 10110994307
Offset: 1

Views

Author

Cino Hilliard, May 08 2003

Keywords

Comments

The polynomial is to pass through the points (k, prime(k)), k=1..n.
The constant term is always an integer because it is the same as f(0), which can be computed from the difference table of the sequence of primes. See Conway and Guy. In fact, the interpolating polynomial is integral for all integer arguments.
A plot of the first 1000 terms shows that the sequence grows exponentially and changes signs occasionally. The Mathematica lines show two ways of computing the sequence. The second, which uses the difference table, is much faster.
The dual sequence (in the sense of Sun, q.v.) of the primes. - Charles R Greathouse IV, Oct 03 2013

Examples

			For n=4, we fit a cubic through the 4 points (1,2),(2,3),(3,5),(4,7) to obtain a(4) = 3.
		

References

  • J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, p. 80

Crossrefs

Programs

  • Mathematica
    Table[Coefficient[Expand[InterpolatingPolynomial[Prime[Range[n]], x]], x, 0], {n, 50}]
    Diff[lst_List] := Table[lst[[i+1]]-lst[[i]], {i, Length[lst]-1}]; n=50; dt=Table[{}, {n}]; dt[[1]]=Prime[Range[n]]; Do[dt[[i]]=Diff[dt[[i-1]]], {i, 2, n}]; Table[s=dt[[i, 1]]; Do[s=dt[[i-j, 1]]-s, {j, i-1}]; s, {i, n}]
  • PARI
    dual(v:vec)=vector(#v,i,-sum(j=0,i-1,binomial(i-1,j)*(-1)^j*v[j+1]))
    dual(concat(0,primes(100)))[2..101] \\ Charles R Greathouse IV, Oct 03 2013
    
  • PARI
    {a(n) = sum(k=0, n-1, sum(i=0, k, binomial(k, i) * (-1)^i * prime(i+1)))}; /* Michael Somos, Dec 02 2020 */

Formula

a(n) = sum{k=1, .., n} (-1)^(k+1) A007442(k)

Extensions

Edited by T. D. Noe, May 08 2003

A378621 Antidiagonal-sums of absolute value of the array A175804(n,k) = n-th term of k-th differences of partition numbers (A000041).

Original entry on oeis.org

1, 1, 4, 5, 11, 16, 36, 65, 142, 285, 595, 1210, 2497, 5134, 10726, 22637, 48383, 104066, 224296, 481985, 1030299, 2188912, 4626313, 9743750, 20492711, 43114180, 90843475, 191776658, 405528200, 858384333, 1817311451, 3845500427, 8129033837, 17162815092
Offset: 0

Views

Author

Gus Wiseman, Dec 14 2024

Keywords

Examples

			Antidiagonal i + j = 3 of A175804 is (3, 1, 0, -1), so a(3) = 5.
		

Crossrefs

These are the antidiagonal-sums of the absolute value of A175804.
First column of the same array is A281425.
For primes we have A376681 or A376684, signed A140119 or A376683.
For composites we have A377035, signed A377034.
For squarefree numbers we have A377040, signed A377039.
For nonsquarefree numbers we have A377048, signed A377049.
For prime powers we have A377053, signed A377052.
The signed version is A377056.
The corresponding array for strict partitions is A378622, see A293467, A377285, A378971, A378970.
A000009 counts strict integer partitions, differences A087897, A378972.
A000041 counts integer partitions, differences A002865, A053445.

Programs

  • Mathematica
    nn=30;
    q=Table[PartitionsP[n],{n,0,nn}];
    t=Table[Sum[(-1)^(j-k)*Binomial[j,k]*q[[i+k]],{k,0,j}],{j,0,Length[q]/2},{i,Length[q]/2}]
    Total/@Abs/@Table[t[[j,i-j+1]],{i,nn/2},{j,i}]
Previous Showing 11-20 of 23 results. Next