cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-43 of 43 results.

A160550 a(n) = A001065(n) mod A000005(n).

Original entry on oeis.org

0, 1, 1, 0, 1, 2, 1, 3, 1, 0, 1, 4, 1, 2, 1, 0, 1, 3, 1, 4, 3, 2, 1, 4, 0, 0, 1, 4, 1, 2, 1, 1, 3, 0, 1, 1, 1, 2, 1, 2, 1, 6, 1, 4, 3, 2, 1, 6, 2, 1, 1, 4, 1, 2, 1, 0, 3, 0, 1, 0, 1, 2, 5, 0, 3, 6, 1, 4, 3, 2, 1, 3, 1, 0, 1, 4, 3, 2, 1, 6, 0, 0, 1, 8, 3, 2, 1, 4, 1, 0, 1, 4, 3, 2, 1, 0, 1, 1, 3, 0, 1, 2, 1, 2, 7
Offset: 1

Views

Author

Ctibor O. Zizka, May 19 2009

Keywords

Comments

A054022(n) for n > 1 gives the numbers k such that a(k) = 1.

Crossrefs

Programs

  • Magma
    [ (SumOfDivisors(n)-n) mod NumberOfDivisors(n): n in [1..105] ]; // Klaus Brockhaus, May 21 2009
    
  • Mathematica
    Table[Mod[DivisorSigma[1,n]-n,DivisorSigma[0,n]],{n,110}] (* Harvey P. Dale, Jun 22 2013 *)
  • PARI
    A160550(n)=lift(Mod(sigma(n)-n,numdiv(n))); \\ Michael B. Porter, Oct 13 2009

Extensions

Extended and comment edited by Klaus Brockhaus, May 21 2009

A145191 Numbers m such that Sum_{i=1..m} omega(i)^2 is divisible by m, where omega is A001221.

Original entry on oeis.org

1, 20, 68, 903, 3876, 3890, 19096, 19122, 19127, 110990, 111004, 111007, 111010, 111013, 774276, 774277, 774278, 774279, 774303, 774313, 774314, 774315, 6615593, 70607550, 70607559, 959878582, 959878737, 959878753, 959878836, 959878846, 959878888, 959878902, 959878914
Offset: 1

Views

Author

Ctibor O. Zizka, Oct 03 2008

Keywords

Comments

If for some m is c square, then we have RootMeanSquare(omega(1),...,omega(n)) = c.

Crossrefs

Programs

  • Mathematica
    With[{max = 10^5}, Position[Accumulate[PrimeNu[Range[max]]^2]/Range[max], ?IntegerQ] // Flatten] (* _Amiram Eldar, Sep 22 2024 *)
  • PARI
    isok(m) = !frac(sum(i=1, m, omega(i)^2)/m); \\ Michel Marcus, Mar 15 2022
    
  • PARI
    lista(nn) = {my(v = vector(nn, k, omega(k)^2)); print1(1, ", "); for (n=2, nn, v[n] += v[n-1]; if (! frac(v[n]/n), print1(n, ", ")););} \\ Michel Marcus, Mar 16 2022
    
  • PARI
    listaa(nn) = {my(v = vector(nn, k, omega(k)^2)); print1(1, ", "); for (n=2, nn, v[n] += v[n-1]; if (! frac(v[n]/n), print1(n, ", "));); for (m=1, 100, last = v[nn]; v = vector(nn, k, omega(k+m*nn)^2); v[1] += last; for (n=2, nn, v[n] += v[n-1]; if (! frac(v[n]/(m*nn+n)), print1(n+m*nn, ", "));););} \\ Michel Marcus, Mar 16 2022

Extensions

a(7)-a(9) from Michel Marcus, Mar 15 2022
a(10)-a(25) from Michel Marcus, Mar 16 2022
a(26)-a(33) from Amiram Eldar, Sep 22 2024

A164986 Numbers of the form 2p^2 = q^2 + 1, where p and q are primes.

Original entry on oeis.org

50, 1682, 3971273138702695316402, 367680737852094722224630791187352516632102802
Offset: 1

Views

Author

Rick L. Shepherd, Sep 03 2009

Keywords

Comments

A079704 INTERSECT A002522. Subsequence of A088920 (Solutions k to the Diophantine equation k = 2n^2 = m^2+1): those terms for which associated m in A002315 and n in A001653 are both prime.
Corresponding p are prime Pell numbers (prime denominators of continued fraction convergents to sqrt(2)).
Corresponding q are prime numerators of the continued fraction convergents to sqrt(2).
Corresponding p, q, p^2, q^2, (p,q), (q,p), etc., form subsequences of many other OEIS sequences; see cross-references.
Any further terms are too large to include here.

Examples

			a(1) = 50 as 50 = 2*5^2 = 7^2 + 1, where 5 and 7 are prime.
		

Crossrefs

Cf. A088920, A118612, A086397, A086395, A002315 (NSW numbers), A088165 (prime NSW numbers = prime RMS numbers (A140480)), A001653, A000129 (Pell numbers), A086383, A101411, A079704, A002522, A008843, A104683, A163742, etc.

Formula

a(n) = 2*(A118612(n+1))^2 = (A086397(n+1))^2 + 1.
Previous Showing 41-43 of 43 results.