cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A339118 Number of cycles in the grid graph P_6 X P_n.

Original entry on oeis.org

15, 275, 5034, 80626, 1222363, 18438929, 279285399, 4237530095, 64300829449, 975566486675, 14800469958185, 224540402345213, 3406558215857382, 51681816786790684, 784078741397570677, 11895467318139343215, 180469294422664219486, 2737947622842077799930
Offset: 2

Views

Author

Seiichi Manyama, Nov 24 2020

Keywords

Crossrefs

Programs

  • Python
    # Using graphillion
    from graphillion import GraphSet
    import graphillion.tutorial as tl
    def A(n, k):
        universe = tl.grid(n - 1, k - 1)
        GraphSet.set_universe(universe)
        cycles = GraphSet.cycles()
        return cycles.len()
    def A339118(n):
        return A(6, n)
    print([A339118(n) for n in range(2, 13)])

Formula

Empirical g.f.: -x^2 * (15 - 325*x + 3889*x^2 - 32204*x^3 + 166496*x^4 - 439661*x^5 + 117553*x^6 + 2506529*x^7 - 5691052*x^8 - 128310*x^9 + 16209330*x^10 - 15148184*x^11 - 17089827*x^12 + 28709449*x^13 + 11141815*x^14 - 27136640*x^15 - 13792528*x^16 + 20876587*x^17 + 15963209*x^18 - 11646759*x^19 - 10681356*x^20 + 3192142*x^21 + 3419602*x^22 - 252986*x^23 - 401310*x^24 - 43774*x^25 + 13852*x^26 + 2950*x^27 - 278*x^28 - 48*x^29 + 4*x^30) / ((-1 + x)^2 * (-1 + 38*x - 580*x^2 + 4945*x^3 - 26274*x^4 + 84913*x^5 - 122213*x^6 - 183068*x^7 + 1124479*x^8 - 1544617*x^9 - 1129508*x^10 + 5346947*x^11 - 3023145*x^12 - 6147688*x^13 + 6904233*x^14 + 3952819*x^15 - 5690282*x^16 - 4144167*x^17 + 3164355*x^18 + 4915006*x^19 - 1267655*x^20 - 3336331*x^21 + 82962*x^22 + 1051157*x^23 + 93428*x^24 - 119962*x^25 - 23089*x^26 + 2688*x^27 + 1368*x^28 - 34*x^29 - 30*x^30 + 2*x^31)). - Vaclav Kotesovec, Dec 09 2020

Extensions

Terms a(13) and beyond from Andrew Howroyd, Dec 08 2020

A339119 Number of cycles in the grid graph P_7 X P_n.

Original entry on oeis.org

21, 681, 23984, 692194, 18438929, 487150371, 12947640143, 345142437669, 9203308475041, 245355064111139, 6540331954247241, 174341025325354201, 4647322411026104632, 123881845810609904802, 3302270967098053652763, 88027348826922694314763, 2346510376337057464408514
Offset: 2

Views

Author

Seiichi Manyama, Nov 24 2020

Keywords

Comments

a(n+1) / a(n) tends to 26.65660630533835653493851570574867751479178653672292060740586256111131858... - Vaclav Kotesovec, Nov 24 2020

Crossrefs

Programs

  • Python
    # Using graphillion
    from graphillion import GraphSet
    import graphillion.tutorial as tl
    def A(n, k):
        universe = tl.grid(n - 1, k - 1)
        GraphSet.set_universe(universe)
        cycles = GraphSet.cycles()
        return cycles.len()
    def A339119(n):
        return A(n, 7)
    print([A339119(n) for n in range(2, 15)])

A339120 Number of cycles in the grid graph P_8 X P_n.

Original entry on oeis.org

28, 1664, 114069, 5948291, 279285399, 12947640143, 603841648931, 28251882697663, 1322310119854705, 61875355046353061, 2895006802805407868, 135448608195945754204, 6337277838067727854392, 296505504331623399871908, 13872765058478362509835979, 649072483984291902586660423
Offset: 2

Views

Author

Seiichi Manyama, Nov 24 2020

Keywords

Crossrefs

Extensions

Terms a(10) and beyond from Andrew Howroyd, Dec 08 2020

A339121 Number of cycles in the grid graph P_9 X P_n.

Original entry on oeis.org

36, 4040, 542295, 51139577, 4237530095, 345142437669, 28251882697663, 2318527339461265, 190273063549680295, 15609156135669687673, 1280305089790914190288, 105011610206669201362004, 8613171107463963712000106, 706463610718638922253288622, 57945052730138702492774189915
Offset: 2

Views

Author

Seiichi Manyama, Nov 24 2020

Keywords

Crossrefs

Programs

  • Python
    # Using graphillion
    from graphillion import GraphSet
    import graphillion.tutorial as tl
    def A(n, k):
        universe = tl.grid(n - 1, k - 1)
        GraphSet.set_universe(universe)
        cycles = GraphSet.cycles()
        return cycles.len()
    def A339121(n):
        return A(n, 9)
    print([A339121(n) for n in range(2, 15)])

A271802 Number of cuttings of an n X n checkerboard along grid lines into two pieces with holes disallowed.

Original entry on oeis.org

0, 6, 52, 614, 16000, 1114394, 220762028, 127074234622, 215163221802400, 1080509693050320314, 16181730102294154610684, 725449589191165593072311582, 97631783799192329642727718567824, 39528641527526180063041016094650084850
Offset: 1

Views

Author

Andrew Howroyd, Apr 14 2016

Keywords

Comments

Equivalently, the number of partitionings of an n X n checkerboard into two edgewise-connected simply-connected sets. (Cf. A068416).
Each part is required to contain at least one cell and cuttings are considered different if they only differ by rotation or reflection.

Programs

Formula

a(n) = A068416(n) - A140517(n-2).

A358707 Number of cycles in the grid graph P_10 X P_n.

Original entry on oeis.org

45, 9779, 2577870, 439673502, 64300829449, 9203308475041, 1322310119854705, 190273063549680295, 27359264067916806101, 3931128009418993765997, 564680431992866012642342, 81106350080343571152166324, 11649258590678717543578165244, 1673159830616398545304368383554
Offset: 2

Views

Author

Seiichi Manyama, Nov 30 2022

Keywords

Crossrefs

Row 9 of A231829.
Cf. A140517.

Extensions

a(12)-a(15) from Andrew Howroyd, Jan 28 2023

A368657 Number of cycles in an n X n grid where the cycle cannot touch itself orthogonally or diagonally and must contain at least one inside point.

Original entry on oeis.org

0, 0, 1, 13, 167, 2685, 50391, 1188935, 41749885, 2645126227, 341643017303, 82472721488013, 31312529515504513, 17381378412860375479, 14419291783372365769995, 18997663191047558313462721
Offset: 1

Views

Author

Niklas Gustavsson, Jan 02 2024

Keywords

Comments

For n > 1, n < 5, this shares the sequence with n-1 in A140517. Cycles are not reduced by symmetry (rotation, translation or mirroring). The grid can only have one cycle.

Examples

			For n = 4, there are 13 valid cycles:
.
  1      2      3      4
  ###.   .###   ....   ....
  #.#.   .#.#   .###   ###.
  ###.   .###   .#.#   #.#.
  ....   ....   .###   ###.
.
  5      6      7     8
  ####   ....   ###.  .###
  #..#   ####   #.#.  .#.#
  ####   #..#   #.#.  .#.#
  ....   ####   ###.  .###
.
  9      10     11    12
  .###   ###.   ####  ####
  ##.#   #.##   #..#  #..#
  #..#   #..#   #.##  ##.#
  ####   ####   ###.  .###
.
  13
  ####
  #..#
  #..#
  ####
		

Crossrefs

Previous Showing 11-17 of 17 results.