cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 68 results. Next

A140615 Primes of the form 13x^2+6xy+21y^2.

Original entry on oeis.org

13, 61, 109, 277, 349, 373, 541, 613, 733, 853, 877, 997, 1069, 1117, 1381, 1429, 1597, 1669, 1693, 1789, 1861, 1933, 2053, 2221, 2389, 2437, 2749, 2917, 3109, 3181, 3229, 3253, 3373, 3517, 3541, 3637, 3709, 4021, 4549, 4597, 4813, 4861
Offset: 1

Views

Author

T. D. Noe, May 19 2008

Keywords

Comments

Discriminant=-1056. Also primes of the form 13x^2+2xy+61y^2.
In base 12, the sequence is 11, 51, 91, 1E1, 251, 271, 391, 431, 511, 5E1, 611, 6E1, 751, 791, 971, 9E1, E11, E71, E91, 1051, 10E1, 1151, 1231, 1351, 1471, 14E1, 1711, 1831, 1971, 1X11, 1X51, 1X71, 1E51, 2051, 2071, 2131, 2191, 23E1, 2771, 27E1, 2951, 2991, where X is 10 and E is 11. Moreover, the discriminant is -740. - Walter Kehowski, May 31 2008

Crossrefs

Cf. A140633.

Programs

  • Mathematica
    Union[QuadPrimes2[13, 6, 21, 10000], QuadPrimes2[13, -6, 21, 10000]] (* see A106856 *)

A140616 Primes of the form 5x^2+4xy+68y^2.

Original entry on oeis.org

5, 101, 173, 269, 293, 461, 509, 677, 773, 797, 941, 1013, 1109, 1181, 1277, 1301, 1613, 1637, 1949, 1973, 2141, 2309, 2357, 2477, 2621, 2693, 2789, 2861, 2957, 3461, 3533, 3701, 3797, 3821, 3989, 4133, 4157, 4373, 4493, 4637, 4877, 4973
Offset: 1

Views

Author

T. D. Noe, May 19 2008

Keywords

Comments

Discriminant=-1344. Also primes of the form 5x^2+2xy+101y^2.
In base 12, the sequence is 5, 85, 125, 1X5, 205, 325, 365, 485, 545, 565, 665, 705, 785, 825, 8X5, 905, E25, E45, 1165, 1185, 12X5, 1405, 1445, 1525, 1625, 1685, 1745, 17X5, 1865, 2005, 2065, 2185, 2245, 2265, 2385, 2485, 24X5, 2645, 2725, 2825, 29X5, 2X65, where X is for 10 and E is for 11. Moreover, the discriminant is -940. - Walter Kehowski, May 31 2008

Crossrefs

Cf. A140633.

Programs

  • Mathematica
    Union[QuadPrimes2[5, 4, 68, 10000], QuadPrimes2[5, -4, 68, 10000]] (* see A106856 *)

A140619 Primes of the form 19x^2+4xy+28y^2.

Original entry on oeis.org

19, 43, 139, 211, 283, 307, 523, 547, 571, 739, 787, 811, 1051, 1459, 1531, 1579, 1627, 1723, 1867, 1987, 2131, 2251, 2371, 2659, 2683, 2851, 3163, 3187, 3307, 3571, 3643, 3691, 3739, 3907, 4003, 4099, 4219, 4243, 4363, 4483, 4507, 5011
Offset: 1

Views

Author

T. D. Noe, May 19 2008

Keywords

Comments

Discriminant=-2112. Also primes of the form 19x^2+10xy+43y^2.
In base 12, the sequence is 17, 37, E7, 157, 1E7, 217, 377, 397, 3E7, 517, 557, 577, 737, X17, X77, XE7, E37, EE7, 10E7, 1197, 1297, 1377, 1457, 1657, 1677, 1797, 19E7, 1X17, 1XE7, 2097, 2137, 2177, 21E7, 2317, 2397, 2457, 2537, 2557, 2637, 2717, 2737, 2X97, where X is for 10 and E is for 11. Moreover, the discriminant is -1280. - Walter Kehowski, Jun 01 2008

Crossrefs

Cf. A140633.

Programs

  • Mathematica
    Union[QuadPrimes2[19, 4, 28, 10000], QuadPrimes2[19, -4, 28, 10000]] (* see A106856 *)

A140620 Primes of the form 23x^2+4xy+68y^2.

Original entry on oeis.org

23, 263, 503, 647, 887, 1223, 1583, 1823, 1847, 2063, 2207, 2447, 2687, 2903, 3407, 3527, 3623, 3767, 4007, 4463, 4703, 4943, 4967, 5087, 5303, 5807, 5903, 5927, 6263, 6863, 7127, 7487, 7583, 7823, 8087, 8423, 8447, 9623, 9767, 10007, 10247
Offset: 1

Views

Author

T. D. Noe, May 19 2008

Keywords

Comments

Discriminant=-6240. Also primes of the form 23x^2+18xy+207y^2.
In base 12, the sequence is 1E, 19E, 35E, 45E, 61E, 85E, XEE, 107E, 109E, 123E, 133E, 14EE, 167E, 181E, 1E7E, 205E, 211E, 221E, 239E, 26EE, 287E, 2X3E, 2X5E, 2E3E, 309E, 343E, 34EE, 351E, 375E, 3E7E, 415E, 43EE, 447E, 463E, 481E, 4X5E, 4X7E, 569E, 579E, 595E, 5E1E, where X is 10 and E is 11. Moreover, the discriminant is -3740. - Walter Kehowski, Jun 01 2008

Crossrefs

Cf. A140633.

Programs

  • Mathematica
    Union[QuadPrimes2[23, 4, 68, 10000], QuadPrimes2[23, -4, 68, 10000]] (* see A106856 *)

A140632 Primes of the form 55x^2+10xy+199y^2.

Original entry on oeis.org

199, 439, 1039, 1231, 1951, 2239, 2551, 2791, 3559, 3631, 4759, 5431, 6991, 7159, 7591, 8839, 9439, 10111, 11119, 11311, 11959, 13159, 13711, 13831, 14479, 14551, 15391, 15679, 15991, 16519, 16831, 17239, 17359, 17839, 17911, 18199, 18919
Offset: 1

Views

Author

T. D. Noe, May 19 2008

Keywords

Comments

Discriminant=-43680. Also primes of the form 159x^2+120xy+160y^2.
In base 12, the sequence is 147, 307, 727, 867, 1167, 1367, 1587, 1747, 2087, 2127, 2907, 3187, 4067, 4187, 4487, 5147, 5567, 5X27, 6527, 6667, 6E07, 7747, 7E27, 8007, 8467, 8507, 8XX7, 90X7, 9307, 9687, 98X7, 9E87, X067, X3X7, X447, X647, XE47, where X is 10 and E is 11. Moreover, the discriminant is -21340. - Walter Kehowski, Jun 01 2008

Crossrefs

Cf. A140633.

Programs

  • Mathematica
    Union[QuadPrimes2[55, 10, 199, 10000], QuadPrimes2[55, -10, 199, 10000]] (* see A106856 *)

A140617 Primes of the form 11x^2+8xy+32y^2.

Original entry on oeis.org

11, 107, 179, 347, 443, 491, 659, 683, 827, 947, 1019, 1163, 1187, 1283, 1451, 1499, 1523, 1619, 1667, 1787, 2003, 2027, 2339, 2459, 2531, 2699, 2843, 2963, 3011, 3203, 3299, 3347, 3371, 3467, 3539, 3803, 3851, 4019, 4139, 4211, 4523, 4547
Offset: 1

Views

Author

T. D. Noe, May 19 2008

Keywords

Comments

Discriminant=-1344. Also primes of the form 11x^2+4xy+92y^2.
In base 12, the sequence is E, 8E, 12E, 24E, 30E, 34E, 46E, 48E, 58E, 66E, 70E, 80E, 82E, 8XE, X0E, X4E, X6E, E2E, E6E, 104E, 11XE, 120E, 142E, 150E, 156E, 168E, 178E, 186E, 18XE, 1X2E, 1XXE, 1E2E, 1E4E, 200E, 206E, 224E, 228E, 23XE, 248E, 252E, 274E, 276E, where X is for 10 and E is for 11. Moreover, the discriminant is -940. - Walter Kehowski, May 31 2008

Crossrefs

Cf. A140633.

Programs

  • Mathematica
    Union[QuadPrimes2[11, 8, 32, 10000], QuadPrimes2[11, -8, 32, 10000]] (* see A106856 *)

A140618 Primes of the form 20*x^2+4*x*y+23*y^2.

Original entry on oeis.org

23, 47, 191, 239, 263, 311, 359, 479, 503, 647, 719, 1031, 1103, 1151, 1223, 1487, 1559, 1583, 1607, 1847, 1871, 2039, 2063, 2087, 2399, 2543, 2591, 2927, 2999, 3407, 3671, 3767, 3863, 3911, 4007, 4127, 4463, 4583, 4679, 4751, 4799, 4871
Offset: 1

Views

Author

T. D. Noe, May 19 2008

Keywords

Comments

Discriminant = -1824. Also primes of the form 23*x^2+20*x*y+44*y^2.
In base 12, the sequence is 1E, 3E, 13E, 17E, 19E, 21E, 25E, 33E, 35E, 45E, 4EE, 71E, 77E, 7EE, 85E, X3E, X9E, XEE, E1E, 109E, 10EE, 121E, 123E, 125E, 147E, 157E, 15EE, 183E, 189E, 1E7E, 215E, 221E, 229E, 231E, 239E, 247E, 26EE, 279E, 285E, 28EE, 293E, 299E, where X is for 10 and E is for 11. Moreover, the discriminant is -1080. - Walter Kehowski, May 31 2008

Crossrefs

Cf. A140633.

Programs

  • Mathematica
    Union[QuadPrimes2[20, 4, 23, 10000], QuadPrimes2[20, -4, 23, 10000]] (* see A106856 *)

A140621 Primes of the form 28x^2+12xy+57y^2.

Original entry on oeis.org

73, 97, 193, 457, 577, 1033, 1657, 1753, 2017, 2113, 2137, 2377, 2593, 2953, 3217, 3313, 3673, 3697, 4153, 4297, 4513, 5233, 5857, 6073, 6337, 6793, 7057, 7417, 7753, 7873, 7993, 8353, 8377, 9433, 9817, 10177, 10753, 10993, 11113, 11497
Offset: 1

Views

Author

T. D. Noe, May 19 2008

Keywords

Comments

Discriminant=-6240. Also primes of the form 72x^2+48xy+73y^2.
In base 12, the sequence is 61, 81, 141, 321, 401, 721, E61, 1021, 1201, 1281, 12X1, 1461, 1601, 1861, 1X41, 1E01, 2161, 2181, 24X1, 25X1, 2741, 3041, 3481, 3621, 3801, 3E21, 4101, 4361, 45X1, 4681, 4761, 4X01, 4X21, 5561, 5821, 5X81, 6281, 6441, 6521, 67X1, where X is for 10 and E is for 11. Moreover, the discriminant is -3740. - Walter Kehowski, Jun 01 2008

Crossrefs

Cf. A140633.

Programs

  • Mathematica
    Union[QuadPrimes2[28, 12, 57, 10000], QuadPrimes2[28, -12, 57, 10000]] (* see A106856 *)

A140622 Primes of the form 21x^2+12xy+76y^2.

Original entry on oeis.org

109, 229, 349, 421, 541, 661, 709, 1021, 1549, 1669, 1789, 1861, 2221, 2269, 2749, 3061, 3109, 3229, 3469, 3541, 4621, 4789, 4909, 5101, 5701, 5869, 6229, 6469, 6661, 6781, 6949, 7741, 7789, 8101, 8221, 8461, 8821, 9349, 9661, 9781, 9901
Offset: 1

Views

Author

T. D. Noe, May 19 2008

Keywords

Comments

Discriminant=-6240. Also primes of the form 45x^2+30xy+109y^2.
In base 12, the sequence is 91, 171, 251, 2E1, 391, 471, 4E1, 711, X91, E71, 1051, 10E1, 1351, 1391, 1711, 1931, 1971, 1X51, 2011, 2071, 2811, 2931, 2X11, 2E51, 3371, 3491, 3731, 38E1, 3X31, 3E11, 4031, 4591, 4611, 4831, 4911, 4X91, 5131, 54E1, 5711, 57E1, 5891, where X is for 10 and E is for 11. Moreover, the discriminant is -3740. - Walter Kehowski, Jun 01 2008

Crossrefs

Cf. A140633.

Programs

  • Mathematica
    Union[QuadPrimes2[21, 12, 76, 10000], QuadPrimes2[21, -12, 76, 10000]] (* see A106856 *)

A140623 Primes of the form 35x^2+30xy+51y^2.

Original entry on oeis.org

131, 179, 251, 419, 491, 659, 971, 1091, 1499, 1811, 1979, 2339, 2531, 2939, 3251, 3299, 3371, 3539, 3779, 3851, 4091, 4211, 4931, 5099, 5171, 5651, 6491, 6659, 6899, 6971, 7019, 7211, 7331, 8219, 8291, 9491, 9539, 9851, 10091, 10139, 10331
Offset: 1

Views

Author

T. D. Noe, May 19 2008

Keywords

Comments

Discriminant=-6240. Also primes of the form 36x^2+12xy+131y^2.
In base 12, the sequence is XE, 12E, 18E, 2XE, 34E, 46E, 68E, 76E, X4E, 106E, 118E, 142E, 156E, 184E, 1X6E, 1XXE, 1E4E, 206E, 222E, 228E, 244E, 252E, 2X2E, 2E4E, 2EXE, 332E, 390E, 3X2E, 3EXE, 404E, 408E, 420E, 42XE, 490E, 496E, 55XE, 562E, 584E, 5X0E, 5X4E, 5E8E, where X is 10 and E is 11. Moreover, the discriminant is -3740. - Walter Kehowski, Jun 01 2008

Crossrefs

Cf. A140633.

Programs

  • Mathematica
    Union[QuadPrimes2[35, 30, 51, 10000], QuadPrimes2[35, -30, 51, 10000]] (* see A106856 *)

Extensions

Corrected and extended b-file - Ray Chandler, Aug 02 2014
Previous Showing 51-60 of 68 results. Next