cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-68 of 68 results.

A140624 Primes of the form 19x^2+14xy+91y^2.

Original entry on oeis.org

19, 139, 619, 691, 811, 859, 1291, 1459, 1531, 1699, 2131, 2371, 2539, 2659, 2971, 3331, 3499, 4051, 4219, 4339, 4651, 5011, 5059, 5179, 5659, 5851, 6571, 6691, 7411, 7699, 8011, 8179, 8419, 8539, 9091, 9859, 9931, 10099, 10531, 10771, 10891
Offset: 1

Views

Author

T. D. Noe, May 19 2008

Keywords

Comments

Discriminant=-6720. Also primes of the form 19x^2+16xy+136y^2.
In base 12, the sequence is 17, E7, 437, 497, 577, 5E7, 8E7, X17, X77, E97, 1297, 1457, 1577, 1657, 1877, 1E17, 2037, 2417, 2537, 2617, 2837, 2X97, 2E17, 2EE7, 3337, 3477, 3977, 3X57, 4357, 4557, 4777, 4897, 4X57, 4E37, 5317, 5857, 58E7, 5X17, 6117, 6297, 6377, where X is 10 and E is 11. Moreover, the discriminant is -3X80. - Walter Kehowski, Jun 01 2008

Crossrefs

Cf. A140633.

Programs

  • Mathematica
    Union[QuadPrimes2[19, 14, 91, 10000], QuadPrimes2[19, -14, 91, 10000]] (* see A106856 *)

A140625 Primes of the form 28x^2+20xy+85y^2.

Original entry on oeis.org

157, 277, 397, 613, 733, 757, 853, 997, 1213, 1453, 1597, 2053, 2437, 2557, 2677, 2797, 3037, 3253, 3733, 3877, 4357, 4813, 4957, 5077, 5413, 5557, 6277, 6637, 6733, 6997, 7237, 7573, 8053, 8293, 8893, 9013, 9277, 9397, 9733, 9973, 10093
Offset: 1

Views

Author

T. D. Noe, May 19 2008

Keywords

Comments

Discriminant=-9120. Also primes of the form 45x^2+30xy+157y^2.
In base 12, the sequence is 111, 1E1, 291, 431, 511, 531, 5E1, 6E1, 851, X11, E11, 1231, 14E1, 1591, 1671, 1751, 1911, 1X71, 21E1, 22E1, 2631, 2951, 2X51, 2E31, 3171, 3271, 3771, 3X11, 3X91, 4071, 4231, 4471, 47E1, 4971, 5191, 5271, 5451, 5531, 5771, 5931, 5X11, where X is 10 and E is 11. Moreover, the discriminant is -5340. - Walter Kehowski, Jun 01 2008

Crossrefs

Cf. A140633.

Programs

  • Mathematica
    Union[QuadPrimes2[28, 20, 85, 10000], QuadPrimes2[28, -20, 85, 10000]] (* see A106856 *)

A140626 Primes of the form 51x^2+48xy+56y^2.

Original entry on oeis.org

59, 179, 659, 971, 1019, 1091, 1571, 1931, 1979, 2339, 2459, 2579, 2939, 3251, 3299, 3371, 3491, 3851, 4019, 4211, 4259, 4931, 5171, 5531, 5651, 6131, 6299, 6491, 6779, 6899, 7019, 7211, 7451, 7499, 7691, 8819, 9059, 9419, 9491, 10091
Offset: 1

Views

Author

T. D. Noe, May 19 2008

Keywords

Comments

Discriminant=-9120. Also primes of the form 59x^2+4xy+116y^2.
In base 12, the sequence is 4E, 12E, 46E, 68E, 70E, 76E, XXE, 114E, 118E, 142E, 150E, 15XE, 184E, 1X6E, 1XXE, 1E4E, 202E, 228E, 23XE, 252E, 256E, 2X2E, 2EXE, 324E, 332E, 366E, 378E, 390E, 3E0E, 3EXE, 408E, 420E, 438E, 440E, 454E, 512E, 52XE, 554E, 55XE, 5X0E, where X is 10 and E is 11. Moreover, the discriminant is -5340. - Walter Kehowski, Jun 01 2008

Crossrefs

Cf. A140633.

Programs

  • Mathematica
    Union[QuadPrimes2[51, 48, 56, 10000], QuadPrimes2[51, -48, 56, 10000]] (* see A106856 *)

Extensions

Corrected and extended b-file - Ray Chandler, Aug 02 2014

A140627 Primes of the form 33x^2+24xy+88y^2.

Original entry on oeis.org

97, 313, 337, 433, 457, 937, 1033, 1753, 1873, 1993, 2113, 2137, 2593, 2713, 2857, 3217, 3457, 3697, 3793, 4177, 4297, 4513, 4657, 5113, 5737, 5857, 5953, 6217, 6553, 6577, 7057, 7393, 7417, 7873, 8233, 8377, 8713, 8737, 9337, 9697, 9817
Offset: 1

Views

Author

T. D. Noe, May 19 2008

Keywords

Comments

Discriminant=-11040. Also primes of the form 57x^2+6xy+97y^2.
In base 12, the sequence is 81, 221, 241, 301, 321, 661, 721, 1021, 1101, 11X1, 1281, 12X1, 1601, 16X1, 17X1, 1X41, 2001, 2181, 2241, 2501, 25X1, 2741, 2841, 2E61, 33X1, 3481, 3541, 3721, 3961, 3981, 4101, 4341, 4361, 4681, 4921, 4X21, 5061, 5081, 54X1, 5741, 5821, where X is 10 and E is 11. Moreover, the discriminant is -6480. - Walter Kehowski, Jun 01 2008

Crossrefs

Cf. A140633.

Programs

  • Mathematica
    Union[QuadPrimes2[33, 24, 88, 10000], QuadPrimes2[33, -24, 88, 10000]] (* see A106856 *)

A140628 Primes of the form 39x^2+6xy+71y^2.

Original entry on oeis.org

71, 239, 311, 599, 719, 1151, 1319, 1439, 1511, 1559, 1871, 2111, 2879, 2999, 3359, 3719, 3911, 4079, 4271, 4751, 4871, 5039, 5279, 5591, 5639, 6311, 6719, 6791, 6959, 7079, 8039, 8951, 8999, 9239, 9431, 9479, 9551, 9719, 9791, 9839, 10151
Offset: 1

Views

Author

T. D. Noe, May 19 2008

Keywords

Comments

Discriminant=-11040. Also primes of the form 71x^2+70xy+95y^2.
In base 12, the sequence is 5E, 17E, 21E, 41E, 4EE, 7EE, 91E, 9EE, X5E, X9E, 10EE, 127E, 17EE, 189E, 1E3E, 219E, 231E, 243E, 257E, 28EE, 299E, 2XEE, 307E, 329E, 331E, 379E, 3X7E, 3E1E, 403E, 411E, 479E, 521E, 525E, 541E, 555E, 559E, 563E, 575E, 57EE, 583E, 5X5E, where X is 10 and E is 11. Moreover, the discriminant is -6480. - Walter Kehowski, Jun 01 2008

Crossrefs

Cf. A140633.

Programs

  • Mathematica
    Union[QuadPrimes2[39, 6, 71, 10000], QuadPrimes2[39, -6, 71, 10000]] (* see A106856 *)

A140629 Primes of the form 76x^2+20xy+145y^2.

Original entry on oeis.org

241, 409, 769, 1321, 1489, 2281, 3001, 4129, 4441, 5449, 5689, 6121, 6481, 6961, 7129, 7321, 7369, 8209, 9001, 11161, 11329, 11689, 12241, 12409, 13249, 13681, 13921, 14929, 15361, 16369, 16729, 17041, 17401, 17569, 17881, 18049, 18289
Offset: 1

Views

Author

T. D. Noe, May 19 2008

Keywords

Comments

Discriminant=-43680. Also primes of the form 96x^2+72xy+241y^2.
In base 12, the sequence is 181, 2X1, 541, 921, X41, 13X1, 18X1, 2481, 26X1, 31X1, 3361, 3661, 3901, 4041, 4161, 42X1, 4321, 4901, 5261, 6561, 6681, 6921, 7101, 7221, 7801, 7E01, 8081, 8781, 8X81, 9581, 9821, 9X41, X0X1, X201, X421, X541, X701, where X is 10 and E is 11. Moreover, the discriminant is -21340. - Walter Kehowski, Jun 01 2008

Crossrefs

Cf. A140633.

Programs

  • Mathematica
    Union[QuadPrimes2[76, 20, 145, 10000], QuadPrimes2[76, -20, 145, 10000]] (* see A106856 *)

A140630 Primes of the form 88x^2+32xy+127y^2.

Original entry on oeis.org

127, 823, 1303, 1327, 1663, 3823, 3847, 3943, 4447, 4663, 4783, 5503, 6007, 6343, 6367, 6967, 7687, 8527, 8863, 10663, 10903, 11047, 11743, 12583, 13183, 14407, 14767, 15583, 16927, 17047, 18223, 19447, 20407, 20983, 23143, 23167, 23767
Offset: 1

Views

Author

T. D. Noe, May 19 2008

Keywords

Comments

Discriminant=-43680. Also primes of the form 127x^2+4xy+172y^2.
In base 12, the sequence is X7, 587, 907, 927, E67, 2267, 2287, 2347, 26X7, 2847, 2927, 3227, 3587, 3807, 3827, 4047, 4547, 4E27, 5167, 6207, 6387, 6487, 6967, 7347, 7767, 8407, 8667, 9027, 9967, 9X47, X667, E307, E987, 10187, 11487, 114X7, 11907, where X is 10 and E is 11. Moreover, the discriminant is -21340. - Walter Kehowski, Jun 01 2008

Crossrefs

Cf. A140633.

Programs

  • Mathematica
    Union[QuadPrimes2[88, 32, 127, 10000], QuadPrimes2[88, -32, 127, 10000]] (* see A106856 *)

A140631 Primes of the form 57x^2+18xy+193y^2.

Original entry on oeis.org

193, 457, 1033, 2017, 2137, 2377, 3217, 3313, 3697, 4153, 5233, 6073, 6337, 7057, 7417, 7753, 8353, 9433, 10753, 11113, 11617, 11953, 12097, 12433, 12553, 13297, 14737, 15073, 16417, 16633, 16993, 17257, 17977, 19273, 20113, 20353, 20857
Offset: 1

Views

Author

T. D. Noe, May 19 2008

Keywords

Comments

Discriminant=-43680. Also primes of the form 148x^2+132xy+177y^2.
In base 12, the sequence is 141, 321, 721, 1201, 12X1, 1461, 1X41, 1E01, 2181, 24X1, 3041, 3621, 3801, 4101, 4361, 45X1, 4X01, 5561, 6281, 6521, 6881, 6E01, 7001, 7241, 7321, 7841, 8641, 8881, 9601, 9761, 9X01, 9EX1, X4X1, E1X1, E781, E941, 100X1, where X is 10 and E is 11. Moreover, the discriminant is -21340. - Walter Kehowski, Jun 01 2008

Crossrefs

Cf. A140633.

Programs

  • Mathematica
    Union[QuadPrimes2[57, 18, 193, 10000], QuadPrimes2[57, -18, 193, 10000]] (* see A106856 *)
Previous Showing 61-68 of 68 results.