cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-26 of 26 results.

A195468 Lesser of overpseudo-twin-primes to base 2 defined in Comment.

Original entry on oeis.org

85487, 104651, 253241, 280601, 458987, 580337, 1082399, 1207361, 1251947, 1678541, 2811269, 3090089, 5044031, 5173601, 5590619, 9567671, 10323767, 12263129, 16324001, 18073817, 20647619, 21303341, 22849481, 25080101, 28527047, 33627299, 36307979, 43363601, 45414431
Offset: 1

Views

Author

Vladimir Shevelev, Oct 12 2011

Keywords

Comments

If h_2(n) is the multiplicative order of 2 modulo n, r_2(n) is the number of cyclotomic cosets of 2 modulo n then, by the definition, n is an overpseudoprime to base 2 if h_2(n)*r_2(n)+1=n. These numbers are in A141232.
We call numbers {n,n+2} overpseudo-twin-primes to base 2 if each of them either prime or overpseudoprime to base 2, but no two are primes.

Crossrefs

Extensions

More terms from Amiram Eldar, Sep 21 2019

A140452 2^(a(n))-1 contains an overpseudoprime divisor.

Original entry on oeis.org

11, 22, 23, 25, 28, 29, 33, 35, 36, 37, 39, 41, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 55, 56, 57, 58, 59, 60, 63, 64, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 90, 91, 92, 94, 95, 96, 97, 99, 100, 101, 102, 103, 104, 105, 106, 108, 109
Offset: 1

Views

Author

Vladimir Shevelev, Jun 26 2008

Keywords

Comments

If p is a prime then p is in the sequence iff 2^p-1 is a composite number.

Crossrefs

Programs

  • PARI
    f(n) = my(t); sumdiv(2*n+1, d, eulerphi(d)/(t=znorder(Mod(2, d))))*t-t+1; \\ A137576
    isopp(n) = (n>1) && !isprime(n) && (n == f((n-1)/2)); \\ A141232
    isok(n) = {fordiv(2^n-1, d, if (isopp(d), return (1));); return (0);} \\ Michel Marcus, Dec 09 2018

Extensions

More terms from Michel Marcus, Dec 09 2018

A140658 Overpseudoprimes to bases 2 and 3.

Original entry on oeis.org

5173601, 13694761, 16070429, 27509653, 54029741, 66096253, 102690677, 117987841, 193949641, 206304961, 314184487, 390612221, 393611653, 717653129, 960946321, 1157839381, 1236313501, 1481626513, 1860373241, 1921309633, 2217879901, 2412172153, 2626783921
Offset: 1

Views

Author

Vladimir Shevelev, Jul 10 2008

Keywords

Comments

From the first 19 strong pseudoprimes to bases 2 and 3 (A072276) only 6 are overpseudoprimes to the same bases.

Crossrefs

Intersection of A141232 and A141350; subsequence of A072276.

Extensions

More terms from Amiram Eldar, Jun 24 2019

A143012 Numbers of the form (4^p + 2^p + 1)/7, where p > 3 is prime.

Original entry on oeis.org

151, 2359, 599479, 9588151, 2454285751, 39268347319, 10052678938039, 41175768098368951, 658812288653553079, 2698495133088002829751, 690814754065816531725751, 11053036065049294753459639, 2829577232652317876553477559, 11589948344943812957569751412151
Offset: 1

Views

Author

Vladimir Shevelev, Jul 15 2008, Jul 21 2008

Keywords

Comments

If 8^p-1 is squarefree then the terms of the sequence are either primes (A000040) or overpseudoprimes to base 2 (A141232). In particular, composite numbers of the sequence are strong pseudoprimes to base 2 (A001262). E.g., a(5)=2454285751 is A001262(1828).

Crossrefs

Programs

  • Maple
    p:=ithprime: seq((4^p(n)+2^p(n)+1)*1/7, n=3..14); # Emeric Deutsch, Aug 16 2008
  • Mathematica
    (4^#+2^#+1)/7&/@Prime[Range[3,30]] (* Harvey P. Dale, Feb 19 2013 *)

Extensions

Extended by Emeric Deutsch, Aug 16 2008
More terms from Harvey P. Dale, Feb 19 2013

A140507 Numbers k such that 3^k-1 contains a divisor which is an overpseudoprime in base 3.

Original entry on oeis.org

5, 10, 11, 15, 16, 17, 18, 19, 20, 22, 23, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85
Offset: 1

Views

Author

Vladimir Shevelev, Jun 30 2008

Keywords

Comments

An odd prime p is in the sequence iff p is not in A028491.

Crossrefs

Programs

  • PARI
    isokd(n) = (n!=1) && !isprime(n) && (gcd(n,3)==1) && (znorder(Mod(3,n)) * (sumdiv(n, d, eulerphi(d)/znorder(Mod(3, d))) - 1) + 1 == n); \\ A141350
    isok(n) = {fordiv (3^n-1, d, if (isokd(d), return (1));); return (0);}

Extensions

More terms from Michel Marcus, Oct 25 2018

A140509 Numbers k such that 5^k-1 contains a divisor which is an overpseudoprime to base 5.

Original entry on oeis.org

5, 9, 10, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 48, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80
Offset: 1

Views

Author

Vladimir Shevelev, Jun 30 2008

Keywords

Comments

An odd prime p is in the sequence iff p is not in A004061.

Crossrefs

Programs

  • PARI
    isokd(n) = (n>5) && !isprime(n) && (gcd(n,5)==1) && (znorder(Mod(5,n)) * (sumdiv(n, d, eulerphi(d)/znorder(Mod(5, d))) - 1) + 1 == n); \\ A141390
    isok(n) = {fordiv (5^n-1, dd, if (isokd(dd), return (1));); return (0);} \\ Michel Marcus, Oct 25 2018

Extensions

Corrected and more terms from Michel Marcus, Oct 25 2018
Previous Showing 21-26 of 26 results.