cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-23 of 23 results.

A217769 Least number k > n such that sigma(k) = 2*(k-n), or 0 if no such k exists.

Original entry on oeis.org

6, 3, 5, 7, 22, 11, 13, 27, 17, 19, 46, 23, 124, 58, 29, 31, 250, 57, 37, 55, 41, 43, 94, 47, 1264, 106, 53, 87, 118, 59, 61, 85, 134, 67, 142, 71, 73, 712, 158, 79, 166, 83, 405, 115, 89, 141, 406, 119, 97, 202, 101, 103, 214, 107, 109, 145, 113, 177, 418, 143
Offset: 0

Views

Author

Jayanta Basu, Mar 28 2013

Keywords

Comments

a(0) = 6 corresponds to the smallest perfect number.
Is n = 144 the first number for which a(n) = 0? - T. D. Noe, Mar 28 2013
No, a(144) = 95501968. - Giovanni Resta, Mar 28 2013
We can instead compute k - sigma(k)/2 for increasing k, which is computationally much faster. In this case, we stop computing when all n have been found for a range of numbers. - T. D. Noe, Mar 28 2013
Also, the first number whose deficiency is 2n. This is the even bisection of A082730. Hence, the first number in the following sequences: A000396, A191363, A125246, A141548, A125247, A101223, A141549, A141550, A125248, A223608, A223607, A223606. - T. D. Noe, Mar 29 2013
10^12 < a(654) <= 618970019665683124609613824. - Donovan Johnson, Jan 04 2014

Examples

			a(4)=22, since 22 is the least number such that sigma(22)=36=2*(22-4).
		

Crossrefs

Cf. A087998 (negative n).

Programs

  • Mathematica
    Table[Min[Select[Range[2000], DivisorSigma[1, #] == 2*(# - i) &]], {i, 0, 60}]
    nn = 144; t = Table[0, {nn}]; k = 0; While[k++; Times @@ t == 0, s = (2*k - DivisorSigma[1, k])/2; If[s >= 0 && s < nn && IntegerQ[s] && t[[s + 1]] == 0, t[[s + 1]] = k]]; t (* T. D. Noe, Mar 28 2013 *)

A162302 Numbers n such that (A000203(n)+28)/n is an integer.

Original entry on oeis.org

1, 28, 29, 62, 84, 182, 230, 252, 344, 756, 944, 2268, 6710, 6804, 20264, 20412, 36224, 61236, 183708, 538112, 551124, 1653372, 2085710, 4960116, 14503550, 14880348, 33665024, 44641044, 55328384, 133923132, 134438912, 401769396, 615206030, 1082574464
Offset: 1

Views

Author

Ctibor O. Zizka, Jun 30 2009

Keywords

Comments

Contains the subset of all n of the form 28*3^k.
Generalized sequences are defined by A*A000203(n)+ B = C*n with A,B,C integers.
Then we get for different settings of A, B, C hyperperfect numbers:
A=1, C=2, B=0 gives A000396. A=1, C=2, B=1 gives A000079.
A=1, C=2, B=2 gives A056006. A=1, C=2, B=4 gives A125246. A=1, C=2, B=6 gives A141548.
A=1, C=2, B=8 gives A125247. A=1, C=2, B=10 gives A101223. A=1, C=2, B=12 gives A141549.
A=1, C=2, B=14 gives A141550. A=1, C=2, B=16 gives A125248. A=1, C=2, B=0 gives A000396.
A=1, C=2, B=0 gives A000396. A=1, C=3, B=0 gives A005820.
Not in the OEIS: A=1, C=3, B=12,18,28,... A=2, C=3, B=21,27,33,45,... A=3, C=4, B=20,...
Terms not of the form 28*3^n: 1, 29, 62, 182, 230, 344, 944, 6710, 20264, 36224, 538112, 2085710, 14503550, 33665024, 55328384, ..., . [Robert G. Wilson v, Sep 05 2010]

Crossrefs

Programs

  • Maple
    A000203 := proc(n) numtheory[sigma](n) ; end proc:
    isA152302 := proc(n) (A000203(n)+28) mod n = 0 ; end proc:
    for n from 1 to 1000000 do if isA152302(n) then printf("%d,",n) ; end if ; end do: # R. J. Mathar, Aug 25 2010
  • Mathematica
    fQ[n_] := Divisible[ DivisorSigma[1, n] + 28, n]; lst = {}; k = 1; While[k < 10^9/4, If[ fQ@k, AppendTo[lst, k]; Print@k]; k++ ]; lst (* Robert G. Wilson v, Sep 05 2010 *)

Extensions

Missing terms (1, 29, 182,..) inserted, 7 terms added, comment corrected - R. J. Mathar, Aug 25 2010
a(22)-a(30) from Robert G. Wilson v, Sep 05 2010
a(31)-a(34) from Donovan Johnson, Nov 03 2011

A302125 Numbers whose deficiency is a perfect number.

Original entry on oeis.org

7, 15, 29, 52, 62, 182, 230, 315, 344, 592, 944, 998, 1155, 2012, 2570, 4028, 6710, 15128, 19688, 20264, 30248, 36224, 38252, 40730, 43964, 52088, 90332, 96128, 168116, 195224, 258512, 262112, 451952, 538112, 991904, 1209632, 1237856, 1659128, 2080544, 2085710, 2102272, 2186132
Offset: 1

Views

Author

Keywords

Comments

Subsequence of deficient numbers (A005100) whose deficiency (A033879) is a member of perfect numbers (A000396).

Examples

			52 is in the sequence since the divisors of 52 are {1, 2, 4, 13, 26 & 52} so d(52) = 98 and 2*52 - 98 = 6, a perfect number.
		

Crossrefs

Cf. A000396 (perfect numbers), A033879 (deficiency), A005100 (deficient numbers), A141548 (subsequence), A301859 (related sequence).

Programs

  • Mathematica
    fQ[n_] := PerfectNumberQ[2n - DivisorSigma[1, n]]; Select[ Range@ 2500000, fQ]
  • PARI
    for(n=1,25*10^5, d=2*n-sigma(n); d>0&&sigma(d)==2*d&&print1(n ","))
Previous Showing 21-23 of 23 results.