cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-11 of 11 results.

A320095 Number of primitive (=aperiodic) n-ary words with length less than or equal to n which are earlier in lexicographic order than any other word derived by cyclic shifts of the alphabet.

Original entry on oeis.org

1, 2, 11, 79, 773, 9281, 137191, 2396150, 48426649, 1111099879, 28531150811, 810554312866, 25239591811405, 854769747700454, 31278135014945519, 1229782937960902111, 51702516367459973873, 2314494592652832016030, 109912203092221714132219, 5518821052631039996623577
Offset: 1

Views

Author

Alois P. Heinz, Oct 05 2018

Keywords

Crossrefs

Main diagonal of A143327.

Programs

  • Maple
    b:= (n, k)-> add(`if`(d=n, k^(n-1), -b(d, k)), d=numtheory[divisors](n)):
    g:= proc(n, k) option remember; b(n, k)+`if`(n<2, 0, g(n-1, k)) end:
    a:= n-> g(n$2):
    seq(a(n), n=1..23);
  • Mathematica
    a[n_] := Sum[n^(d-1)*MoebiusMu[j/d], {j, 1, n}, {d, Divisors[j]}];
    Table[a[n], {n, 1, 20}] (* Jean-François Alcover, Oct 25 2022, after A143327 *)
  • PARI
    a(n) = sum(j=1, n, sumdiv(j, d, n^(d-1) * moebius(j/d))); \\ Michel Marcus, Feb 16 2020

Formula

a(n) = Sum_{j=1..n} Sum_{d|j} n^(d-1) * mu(j/d).
a(n) = A143327(n,n).
a(n) = Sum_{j=1..n} A143325(j,n).
a(n) = A143326(n,n) / n.
a(n) = [x^n] (1/(1 - x)) * Sum_{k>=1} mu(k) * x^k / (1 - n*x^k). - Ilya Gutkovskiy, Feb 16 2020
Previous Showing 11-11 of 11 results.