cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A193390 The hyper-Wiener index of a benzenoid consisting of a straight-line chain of n hexagons (s=2; see the Gutman et al. reference).

Original entry on oeis.org

42, 215, 680, 1661, 3446, 6387, 10900, 17465, 26626, 38991, 55232, 76085, 102350, 134891, 174636, 222577, 279770, 347335, 426456, 518381, 624422, 745955, 884420, 1041321, 1218226, 1416767, 1638640, 1885605, 2159486, 2462171, 2795612, 3161825, 3562890, 4000951, 4478216
Offset: 1

Views

Author

Emeric Deutsch, Jul 25 2011

Keywords

Crossrefs

Programs

  • Magma
    [(8*n^4 + 32*n^3 + 46*n^2 + 37*n + 3)/3: n in [1..30]]; // Vincenzo Librandi, Jul 26 2011
    
  • Maple
    a := proc (n) options operator, arrow: (8/3)*n^4+(32/3)*n^3+(46/3)*n^2+(37/3)*n+1 end proc; seq(a(n), n = 1 .. 35);
  • PARI
    a(n)=(8*n^4+32*n^3+46*n^2+37*n)/3+1 \\ Charles R Greathouse IV, Jul 26 2011

Formula

a(n) = (8*n^4 + 32*n^3 + 46*n^2 + 37*n + 3)/3.
The Wiener-Hosoya polynomial is W(n,t) = (2*(t+1)*t^(2*n+2) - t^3 - 2*t^2 - 3*t + n*(t-1)*(t^2+1)*(t^2-t-4)+2)/(1-t)^2.
G.f.: x*(42 + 5*x + 25*x^2 - 9*x^3 + x^4)/(1-x)^5. - Bruno Berselli, Jul 27 2011

A193400 Hyper-Wiener index of a benzenoid consisting of a chain of n hexagons characterized by the encoding s = 1133 (see the Gutman et al. reference, Sec. 5).

Original entry on oeis.org

42, 215, 636, 1513, 2862, 5211, 8352, 13229, 19314, 28063, 38532, 52785, 69366, 91043, 115752, 147061, 182202, 225639, 273804, 332153, 396222, 472555, 555696, 653373, 759042, 881711, 1013652, 1165249, 1327494, 1512243, 1709112, 1931525, 2167626, 2432503, 2712732
Offset: 1

Views

Author

Emeric Deutsch, Jul 25 2011

Keywords

Crossrefs

Programs

  • Magma
    [(6*n^4 + 40*n^3 + 114*n^2 + 16*n - 45 + (-1)^n*(6*n^2 +20*n -63))/4: n in [1..40]]; // Vincenzo Librandi, Jul 26 2011
    
  • Maple
    a := proc (n) options operator, arrow: (3/2)*n^4+10*n^3+(57/2)*n^2+4*n-45/4+(1/4)*(-1)^n*(6*n^2+20*n-63) end proc: seq(a(n), n = 1 .. 35);
  • PARI
    a(n)=(6*n^4+40*n^3+114*n^2+16*n-45+(-1)^n*(6*n^2+20*n-63))/4 \\ Charles R Greathouse IV, Jul 28 2011

Formula

a(n) = ( 6*n^4 +40*n^3 +114*n^2 +16*n -45 +(-1)^n*(6*n^2 +20*n -63) )/4.
G.f.: x*(42+131*x+122*x^2+63*x^3-146*x^4+25*x^5+78*x^6-27*x^7)/((1+x)^3*(1-x)^5). - Bruno Berselli, Jul 27 2011

A245830 The Szeged index of a benzenoid consisting of a linear chain of n hexagons.

Original entry on oeis.org

54, 243, 656, 1381, 2506, 4119, 6308, 9161, 12766, 17211, 22584, 28973, 36466, 45151, 55116, 66449, 79238, 93571, 109536, 127221, 146714, 168103, 191476, 216921, 244526, 274379, 306568, 341181, 378306, 418031
Offset: 1

Views

Author

Emeric Deutsch, Aug 07 2014

Keywords

Examples

			a(1)=54; indeed, the benzenoid consists of 1 hexagon and each of its six edges contributes 3*3 towards the Szeged index; 6*9 = 54.
		

References

  • M. V. Diudea, I. Gutman, J. Lorentz, Molecular Topology, Nova Science Publishers, Huntington, NY (2001).

Crossrefs

Cf. A143938.

Programs

  • Maple
    a := proc (n) options operator, arrow: (44/3)*n^3+24*n^2+(43/3)*n+1 end proc: seq(a(n), n = 1 .. 30);
  • Mathematica
    LinearRecurrence[{4, -6, 4, -1}, {54, 243, 656, 1381}, 100] (* or *) Table[(44*n^3 + 72*n^2 + 43*n + 3)/3, {n,1,100}] (* G, C, Greubel, Dec 08 2016 *)
  • PARI
    Vec(z*(54 + 27*z + 8*z^2 - z^3)/(1-z)^4 + O(x^50)) \\ G. C. Greubel, Dec 08 2016

Formula

a(n) = (44*n^3 + 72*n^2 + 43*n + 3)/3.
G.f.: z*(54 + 27*z + 8*z^2 - z^3)/(1-z)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - G. C. Greubel, Dec 08 2016

A248095 Triangle read by rows: TR(m,n) is the Wiener index of the hexagonal trapezium T(m,n), defined in the He et al. reference (1 <= n <= m).

Original entry on oeis.org

27, 109, 210, 279, 566, 822, 569, 1182, 1816, 2328, 1011, 2130, 3370, 4540, 5433, 1637, 3482, 5612, 7772, 9707, 11130, 2479, 5310, 8670, 12224, 15653, 18622, 20748, 3569, 7686, 12672, 18096, 23559, 28662, 32974, 36000, 4939, 10682, 17746, 25588
Offset: 1

Views

Author

Emeric Deutsch, Nov 15 2014

Keywords

Comments

m denotes the number of hexagons in the bottom row, while n is the number of rows of hexagons.
TR(m,1) = A143938(m) = Wiener index of a linear chain of m hexagons.
TR(n,n) = A033544(n) = Wiener index of an n-hexagonal triangle.

Examples

			Row 1 is 27; indeed T(1,1) is just one hexagon ABCDEF; it has 6 distances equal to 1 (= number of edges), 6 distances equal to 2 (AC, BD, CE, DA, EA, FB), and 3 distances equal to 3 (AD, BE, CF); 6*1 + 6*2 + 3*3 = 27.
Triangle starts:
  27;
  109, 210;
  279, 566, 822;
  569, 1182, 1816, 2328;
		

Crossrefs

Programs

  • Magma
    /* As triangle */ [[(4*m^3*(n + 1)^2 + 2*m^2*(3 + 11*n + 6*n^2 - 2*n^3))/3 + ((n*(28 + 45*n - 35*n^2 - 8*n^4)+20*m*(1 + 9*n + 6*n^2 - 4*n^3 + n^4)) / 30): n in [1..m]]: m in [1.. 15]]; // Vincenzo Librandi, Nov 16 2014
  • Maple
    TR := proc (m, n) options operator, arrow: (4/3)*m^3*(n+1)^2+(2/3)*m^2*(3+11*n+6*n^2-2*n^3)+(1/30)*n*(28+45*n-35*n^2-8*n^4)+(2/3)*m*(1+9*n+6*n^2-4*n^3+n^4) end proc: for m to 10 do seq(TR(m, n), n = 1 .. m) end do; # yields sequence in triangular form
    G := factor(sum(sum(TR(i, j)*z^i*t^j, j = 1 .. i), i = 1 .. infinity));

Formula

TR(m,n) = (4*m^3*(n + 1)^2 + 2*m^2*(3 + 11*n + 6*n^2 - 2*n^3))/3 + (n*(28 + 45*n - 35*n^2 - 8*n^4)+20*m*(1 + 9*n + 6*n^2 - 4*n^3 + n^4))/30; see Corollary 3,7 in the He et al. reference.
The reader can get the lengthy expression of the bivariate g.f. G by activating the Maple program for TR(m,n) and then activating the Maple program for G.
Previous Showing 11-14 of 14 results.