A193390
The hyper-Wiener index of a benzenoid consisting of a straight-line chain of n hexagons (s=2; see the Gutman et al. reference).
Original entry on oeis.org
42, 215, 680, 1661, 3446, 6387, 10900, 17465, 26626, 38991, 55232, 76085, 102350, 134891, 174636, 222577, 279770, 347335, 426456, 518381, 624422, 745955, 884420, 1041321, 1218226, 1416767, 1638640, 1885605, 2159486, 2462171, 2795612, 3161825, 3562890, 4000951, 4478216
Offset: 1
- Vincenzo Librandi, Table of n, a(n) for n = 1..10000
- A. A. Dobrynin, I. Gutman, S. Klavzar, P. Zigert, Wiener Index of Hexagonal Systems, Acta Applicandae Mathematicae 72 (2002), pp. 247-294.
- I. Gutman, S. Klavzar, M. Petkovsek, and P. Zigert, On Hosoya polynomials of benzenoid graphs, Comm. Math. Comp. Chem. (MATCH), 43, 2001, 49-66.
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
-
[(8*n^4 + 32*n^3 + 46*n^2 + 37*n + 3)/3: n in [1..30]]; // Vincenzo Librandi, Jul 26 2011
-
a := proc (n) options operator, arrow: (8/3)*n^4+(32/3)*n^3+(46/3)*n^2+(37/3)*n+1 end proc; seq(a(n), n = 1 .. 35);
-
a(n)=(8*n^4+32*n^3+46*n^2+37*n)/3+1 \\ Charles R Greathouse IV, Jul 26 2011
A193400
Hyper-Wiener index of a benzenoid consisting of a chain of n hexagons characterized by the encoding s = 1133 (see the Gutman et al. reference, Sec. 5).
Original entry on oeis.org
42, 215, 636, 1513, 2862, 5211, 8352, 13229, 19314, 28063, 38532, 52785, 69366, 91043, 115752, 147061, 182202, 225639, 273804, 332153, 396222, 472555, 555696, 653373, 759042, 881711, 1013652, 1165249, 1327494, 1512243, 1709112, 1931525, 2167626, 2432503, 2712732
Offset: 1
- Vincenzo Librandi, Table of n, a(n) for n = 1..10000
- A. A. Dobrynin, I. Gutman, S. Klavzar, P. Zigert, Wiener Index of Hexagonal Systems, Acta Applicandae Mathematicae 72 (2002), pp. 247-294.
- I. Gutman, S. Klavzar, M. Petkovsek, and P. Zigert, On Hosoya polynomials of benzenoid graphs, Comm. Math. Comp. Chem. (MATCH), 43, 2001, 49-66.
- Index entries for linear recurrences with constant coefficients, signature (2,2,-6,0,6,-2,-2,1).
Cf.
A143937,
A143938,
A193391,
A193392,
A193393,
A193394,
A193395,
A193396,
A193397,
A193398,
A193399.
-
[(6*n^4 + 40*n^3 + 114*n^2 + 16*n - 45 + (-1)^n*(6*n^2 +20*n -63))/4: n in [1..40]]; // Vincenzo Librandi, Jul 26 2011
-
a := proc (n) options operator, arrow: (3/2)*n^4+10*n^3+(57/2)*n^2+4*n-45/4+(1/4)*(-1)^n*(6*n^2+20*n-63) end proc: seq(a(n), n = 1 .. 35);
-
a(n)=(6*n^4+40*n^3+114*n^2+16*n-45+(-1)^n*(6*n^2+20*n-63))/4 \\ Charles R Greathouse IV, Jul 28 2011
A245830
The Szeged index of a benzenoid consisting of a linear chain of n hexagons.
Original entry on oeis.org
54, 243, 656, 1381, 2506, 4119, 6308, 9161, 12766, 17211, 22584, 28973, 36466, 45151, 55116, 66449, 79238, 93571, 109536, 127221, 146714, 168103, 191476, 216921, 244526, 274379, 306568, 341181, 378306, 418031
Offset: 1
a(1)=54; indeed, the benzenoid consists of 1 hexagon and each of its six edges contributes 3*3 towards the Szeged index; 6*9 = 54.
- M. V. Diudea, I. Gutman, J. Lorentz, Molecular Topology, Nova Science Publishers, Huntington, NY (2001).
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- I. Gutman, S. Klavzar, An algorithm for the calculation of the Szeged index of benzenoid hydrocarbons, preprint.
- I. Gutman, S. Klavzar, An algorithm for the calculation of the Szeged index of benzenoid hydrocarbons, J. Chem. Inf. Comput. Sci., 35, 1995, 1011-1014.
- I. Gutman, P. V. Khadikar, T. Khaddar, Wiener and Szeged indices of benzenoid hydrocarbons containing a linear polyacene fragment, Commun. Math. Chem. (MATCH), 35, 1997, 105-116.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
-
a := proc (n) options operator, arrow: (44/3)*n^3+24*n^2+(43/3)*n+1 end proc: seq(a(n), n = 1 .. 30);
-
LinearRecurrence[{4, -6, 4, -1}, {54, 243, 656, 1381}, 100] (* or *) Table[(44*n^3 + 72*n^2 + 43*n + 3)/3, {n,1,100}] (* G, C, Greubel, Dec 08 2016 *)
-
Vec(z*(54 + 27*z + 8*z^2 - z^3)/(1-z)^4 + O(x^50)) \\ G. C. Greubel, Dec 08 2016
A248095
Triangle read by rows: TR(m,n) is the Wiener index of the hexagonal trapezium T(m,n), defined in the He et al. reference (1 <= n <= m).
Original entry on oeis.org
27, 109, 210, 279, 566, 822, 569, 1182, 1816, 2328, 1011, 2130, 3370, 4540, 5433, 1637, 3482, 5612, 7772, 9707, 11130, 2479, 5310, 8670, 12224, 15653, 18622, 20748, 3569, 7686, 12672, 18096, 23559, 28662, 32974, 36000, 4939, 10682, 17746, 25588
Offset: 1
Row 1 is 27; indeed T(1,1) is just one hexagon ABCDEF; it has 6 distances equal to 1 (= number of edges), 6 distances equal to 2 (AC, BD, CE, DA, EA, FB), and 3 distances equal to 3 (AD, BE, CF); 6*1 + 6*2 + 3*3 = 27.
Triangle starts:
27;
109, 210;
279, 566, 822;
569, 1182, 1816, 2328;
-
/* As triangle */ [[(4*m^3*(n + 1)^2 + 2*m^2*(3 + 11*n + 6*n^2 - 2*n^3))/3 + ((n*(28 + 45*n - 35*n^2 - 8*n^4)+20*m*(1 + 9*n + 6*n^2 - 4*n^3 + n^4)) / 30): n in [1..m]]: m in [1.. 15]]; // Vincenzo Librandi, Nov 16 2014
-
TR := proc (m, n) options operator, arrow: (4/3)*m^3*(n+1)^2+(2/3)*m^2*(3+11*n+6*n^2-2*n^3)+(1/30)*n*(28+45*n-35*n^2-8*n^4)+(2/3)*m*(1+9*n+6*n^2-4*n^3+n^4) end proc: for m to 10 do seq(TR(m, n), n = 1 .. m) end do; # yields sequence in triangular form
G := factor(sum(sum(TR(i, j)*z^i*t^j, j = 1 .. i), i = 1 .. infinity));
Comments