cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A145704 Expansion of q^(1/4) * (eta(q^8) * eta(q^10) + eta(q^2) * eta(q^40)) / (eta(q^4) * eta(q^20)) in powers of q.

Original entry on oeis.org

1, 1, 0, -1, 1, 0, 0, -1, 1, 1, -1, -1, 2, 1, -1, -1, 2, 2, -1, -2, 3, 3, -2, -3, 4, 3, -2, -4, 5, 4, -4, -5, 6, 6, -5, -6, 8, 7, -6, -8, 11, 10, -8, -11, 13, 11, -10, -13, 16, 15, -14, -17, 20, 18, -17, -20, 24, 23, -21, -25, 31, 29, -26, -32, 37, 34, -32
Offset: 0

Views

Author

Michael Somos, Oct 17 2008, Nov 11 2008, Jan 21 2009

Keywords

Comments

Denoted by "(160~b)" in Simon Norton's replicable function list.

Examples

			G.f. = 1 + x - x^3 + x^4 - x^7 + x^8 + x^9 - x^10 - x^11 + 2*x^12 + x^13 + ...
G.f. = 1/q + q^3 - q^11 + q^15 - q^27 + q^31 + q^35 - q^39 - q^43 + 2*q^47 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ (QPochhammer[ x^8] QPochhammer[ x^10] + x QPochhammer[ x^2] QPochhammer[ x^40]) / (QPochhammer[ x^4] QPochhammer[ x^20]), {x, 0, n}]; (* Michael Somos, Sep 06 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^8 + A) * eta(x^10 + A) + x * eta(x^2 + A) * eta(x^40 + A)) / (eta(x^4 + A) * eta(x^20 + A)), n))};

Formula

G.f. is a period 1 Fourier series which satisfies f(-1 / (1280 t)) = f(t) where q = exp(2 Pi i t).
a(n) = (-1)^n * A145705(n). a(2*n) = A145706(n). a(2*n + 1) = A145707(n).

A145703 Expansion of chi(x) / chi(-x^10) in powers of x where chi() is a Ramanujan theta function.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 1, 1, 2, 2, 3, 3, 3, 4, 4, 5, 6, 6, 7, 8, 10, 11, 11, 13, 15, 17, 18, 20, 23, 25, 29, 32, 34, 39, 42, 47, 52, 56, 62, 68, 77, 83, 89, 99, 108, 119, 129, 139, 154, 167, 183, 199, 214, 234, 253, 276, 299, 322, 350, 378, 413, 445, 476, 518, 559
Offset: 0

Views

Author

Michael Somos, Oct 17 2008

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + x + x^3 + x^4 + x^5 + x^6 + x^7 + 2*x^8 + 2*x^9 + 3*x^10 + ...
G.f. = q^3 + q^11 + q^27 + q^35 + q^43 + q^51 + q^59 + 2*q^67 + 2*q^75 + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Product[(1 + x^(2*k-1)) / (1 - x^(20*k-10)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 30 2015 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x^2] QPochhammer[ -x^10, x^10], {x, 0, n}]; (* Michael Somos, Sep 06 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^20 + A) / (eta(x + A) * eta(x^4 + A) * eta(x^10 + A)), n))};

Formula

Expansion of q^(-3/8) * eta(q^2)^2 * eta(q^20) / (eta(q) * eta(q^4) * eta(q^10) ) in powers of q.
Euler transform of period 20 sequence [ 1, -1, 1, 0, 1, -1, 1, 0, 1, 0, 1, 0, 1, -1, 1, 0, 1, -1, 1, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (640 t)) = 2^(-1/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A145702.
G.f.: Product_{k>0} (1 + x^(2*k - 1)) / (1 - x^(20*k - 10)).
a(n) = (-1)^n * A145707(n) = A139632(2*n + 1).
a(n) ~ exp(Pi*sqrt(n/5)) / (4*5^(1/4)*n^(3/4)). - Vaclav Kotesovec, Aug 30 2015

A302233 Square array A(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of Product_{j>=1} (1 + x^(k*j))/(1 + x^j).

Original entry on oeis.org

1, 1, 0, 1, -1, 0, 1, -1, 1, 0, 1, -1, 0, -2, 0, 1, -1, 0, 0, 2, 0, 1, -1, 0, -1, 0, -3, 0, 1, -1, 0, -1, 2, -1, 4, 0, 1, -1, 0, -1, 1, -2, 1, -5, 0, 1, -1, 0, -1, 1, 0, 1, -1, 6, 0, 1, -1, 0, -1, 1, -1, 0, -2, 1, -8, 0, 1, -1, 0, -1, 1, -1, 2, -1, 4, 0, 10, 0, 1, -1, 0, -1, 1, -1, 1, -2, 1, -4, 0, -12, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 03 2018

Keywords

Examples

			Square array begins:
1,  1,  1,  1,  1,  1,  ...
0, -1, -1, -1, -1, -1,  ...
0,  1,  0,  0,  0,  0,  ...
0, -2,  0, -1, -1, -1,  ...
0,  2,  0,  2,  1,  1,  ...
0, -3, -1, -2,  0, -1,  ...
		

Crossrefs

Main diagonal gives A081362.

Programs

  • Mathematica
    Table[Function[k, SeriesCoefficient[Product[(1 + x^(k i))/(1 + x^i), {i, 1, n}], {x, 0, n}]][j - n + 1], {j, 0, 12}, {n, 0, j}] // Flatten
    Table[Function[k, SeriesCoefficient[QPochhammer[-1, x^k]/QPochhammer[-1, x], {x, 0, n}]][j - n + 1], {j, 0, 12}, {n, 0, j}] // Flatten

Formula

G.f. of column k: Product_{j>=1} (1 + x^(k*j))/(1 + x^j).
For asymptotics of column k see comment from Vaclav Kotesovec in A145707.
Previous Showing 11-13 of 13 results.