A153655
Triangle T(n, k, j) = T(n-1, k, j) + T(n-1, k-1, j) + (2*j + 1)*prime(j)*T(n-2, k-1, j) with T(2, k, j) = prime(j) and j = 10, read by rows.
Original entry on oeis.org
2, 29, 29, 2, 1678, 2, 2, 24387, 24387, 2, 2, 25607, 1070676, 25607, 2, 2, 26827, 15947966, 15947966, 26827, 2, 2, 28047, 31569456, 683937616, 31569456, 28047, 2, 2, 29267, 47935146, 10427818366, 10427818366, 47935146, 29267, 2, 2, 30487, 65045036, 29701552216, 437373644876, 29701552216, 65045036, 30487, 2
Offset: 1
Triangle begins as:
2;
29, 29;
2, 1678, 2;
2, 24387, 24387, 2;
2, 25607, 1070676, 25607, 2;
2, 26827, 15947966, 15947966, 26827, 2;
2, 28047, 31569456, 683937616, 31569456, 28047, 2;
2, 29267, 47935146, 10427818366, 10427818366, 47935146, 29267, 2;
2, 30487, 65045036, 29701552216, 437373644876, 29701552216, 65045036, 30487, 2;
-
f:= func< n,j | Round(((3-(-1)^n)/2)*NthPrime(j)^(n-1) - 2^((3-(-1)^n)/2)) >;
function T(n,k,j)
if n eq 2 then return NthPrime(j);
elif (n eq 3 and k eq 2 or n eq 4 and k eq 2 or n eq 4 and k eq 3) then return f(n,j);
elif (k eq 1 or k eq n) then return 2;
else return T(n-1,k,j) + T(n-1,k-1,j) + (2*j+1)*NthPrime(j)*T(n-2,k-1,j);
end if; return T;
end function;
[T(n,k,10): k in [1..n], n in [1..12]]; // G. C. Greubel, Mar 03 2021
-
T[n_, k_, j_]:= T[n,k,j]= If[n==2, Prime[j], If[n==3 && k==2 || n==4 && 2<=k<=3, ((3-(-1)^n)/2)*Prime[j]^(n-1) -2^((3-(-1)^n)/2), If[k==1 || k==n, 2, T[n-1,k,j] + T[n-1,k-1,j] + (2*j+1)*Prime[j]*T[n-2,k-1,j] ]]];
Table[T[n,k,10], {n,12}, {k,n}]//Flatten (* modified by G. C. Greubel, Mar 03 2021 *)
-
@CachedFunction
def f(n,j): return ((3-(-1)^n)/2)*nth_prime(j)^(n-1) - 2^((3-(-1)^n)/2)
def T(n,k,j):
if (n==2): return nth_prime(j)
elif (n==3 and k==2 or n==4 and 2<=k<=3): return f(n,j)
elif (k==1 or k==n): return 2
else: return T(n-1,k,j) + T(n-1,k-1,j) + (2*j+1)*nth_prime(j)*T(n-2,k-1,j)
flatten([[T(n,k,10) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Mar 03 2021
A153656
Triangle T(n, k) = T(n-1, k) + T(n-1, k-1) + (2*j +3)*prime(j)*T(n-2, k-1) with j=9, read by rows.
Original entry on oeis.org
2, 23, 23, 2, 1054, 2, 2, 12165, 12165, 2, 2, 13133, 533412, 13133, 2, 2, 14101, 6422240, 6422240, 14101, 2, 2, 15069, 12779580, 270482476, 12779580, 15069, 2, 2, 16037, 19605432, 3385203976, 3385203976, 19605432, 16037, 2, 2, 17005, 26899796, 9577346548, 137413443860, 9577346548, 26899796, 17005, 2
Offset: 1
Triangle begins as:
2;
23, 23;
2, 1054, 2;
2, 12165, 12165, 2;
2, 13133, 533412, 13133, 2;
2, 14101, 6422240, 6422240, 14101, 2;
2, 15069, 12779580, 270482476, 12779580, 15069, 2;
2, 16037, 19605432, 3385203976, 3385203976, 19605432, 16037, 2;
2, 17005, 26899796, 9577346548, 137413443860, 9577346548, 26899796, 17005, 2;
Sequences with variable (p,q,j):
A153516 (0,1,2),
A153518 (0,1,3),
A153520 (0,1,4),
A153521 (0,1,5),
A153648 (1,0,3),
A153649 (1,1,4),
A153650 (1,4,5),
A153651 (1,5,6),
A153652 (2,1,7),
A153653 (2,1,8),
A153654 (2,1,9),
A153655 (2,1,10), this sequence (2,3,9),
A153657 (2,7,10).
-
f:= func< n,j | Round(((3-(-1)^n)/2)*NthPrime(j)^(n-1) - 2^((3-(-1)^n)/2)) >;
function T(n,k,p,q,j)
if n eq 2 then return NthPrime(j);
elif (n eq 3 and k eq 2 or n eq 4 and k eq 2 or n eq 4 and k eq 3) then return f(n,j);
elif (k eq 1 or k eq n) then return 2;
else return T(n-1,k,p,q,j) + T(n-1,k-1,p,q,j) + (p*j+q)*NthPrime(j)*T(n-2,k-1,p,q,j);
end if; return T;
end function;
[T(n,k,2,3,9): k in [1..n], n in [1..12]]; // G. C. Greubel, Mar 06 2021
-
T[n_, k_, p_, q_, j_]:= T[n,k,p,q,j]= If[n==2, Prime[j], If[n==3 && k==2 || n==4 && 2<=k<=3, ((3-(-1)^n)/2)*Prime[j]^(n-1) -2^((3-(-1)^n)/2), If[k==1 || k==n, 2, T[n-1,k,p,q,j] + T[n-1,k-1,p,q,j] + (p*j+q)*Prime[j]*T[n-2,k-1,p,q,j] ]]];
Table[T[n,k,2,3,9], {n,12}, {k,n}]//Flatten (* modified by G. C. Greubel, Mar 06 2021 *)
-
@CachedFunction
def f(n,j): return ((3-(-1)^n)/2)*nth_prime(j)^(n-1) - 2^((3-(-1)^n)/2)
def T(n,k,p,q,j):
if (n==2): return nth_prime(j)
elif (n==3 and k==2 or n==4 and 2<=k<=3): return f(n,j)
elif (k==1 or k==n): return 2
else: return T(n-1,k,p,q,j) + T(n-1,k-1,p,q,j) + (p*j+q)*nth_prime(j)*T(n-2,k-1,p,q,j)
flatten([[T(n,k,2,3,9) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Mar 06 2021
A153657
Triangle T(n, k) = T(n-1, k) + T(n-1, k-1) + (2*j +7)*prime(j)*T(n-2, k-1) with j=10, read by rows.
Original entry on oeis.org
2, 29, 29, 2, 1678, 2, 2, 24387, 24387, 2, 2, 25955, 1362648, 25955, 2, 2, 27523, 20483624, 20483624, 27523, 2, 2, 29091, 40833912, 1107920632, 40833912, 29091, 2, 2, 30659, 62413512, 17187432136, 17187432136, 62413512, 30659, 2, 2, 32227, 85222424, 49222798744, 901876719128, 49222798744, 85222424, 32227, 2
Offset: 1
Triangle begins as:
2;
29, 29;
2, 1678, 2;
2, 24387, 24387, 2;
2, 25955, 1362648, 25955, 2;
2, 27523, 20483624, 20483624, 27523, 2;
2, 29091, 40833912, 1107920632, 40833912, 29091, 2;
2, 30659, 62413512, 17187432136, 17187432136, 62413512, 30659, 2;
2, 32227, 85222424, 49222798744, 901876719128, 49222798744, 85222424, 32227, 2;
Sequences with variable (p,q,j):
A153516 (0,1,2),
A153518 (0,1,3),
A153520 (0,1,4),
A153521 (0,1,5),
A153648 (1,0,3),
A153649 (1,1,4),
A153650 (1,4,5),
A153651 (1,5,6),
A153652 (2,1,7),
A153653 (2,1,8),
A153654 (2,1,9),
A153655 (2,1,10),
A153656 (2,3,9), this sequence (2,7,10).
-
f:= func< n,j | Round(((3-(-1)^n)/2)*NthPrime(j)^(n-1) - 2^((3-(-1)^n)/2)) >;
function T(n,k,p,q,j)
if n eq 2 then return NthPrime(j);
elif (n eq 3 and k eq 2 or n eq 4 and k eq 2 or n eq 4 and k eq 3) then return f(n,j);
elif (k eq 1 or k eq n) then return 2;
else return T(n-1,k,p,q,j) + T(n-1,k-1,p,q,j) + (p*j+q)*NthPrime(j)*T(n-2,k-1,p,q,j);
end if; return T;
end function;
[T(n,k,2,7,10): k in [1..n], n in [1..12]]; // G. C. Greubel, Mar 06 2021
-
T[n_, k_, p_, q_, j_]:= T[n,k,p,q,j]= If[n==2, Prime[j], If[n==3 && k==2 || n==4 && 2<=k<=3, ((3-(-1)^n)/2)*Prime[j]^(n-1) -2^((3-(-1)^n)/2), If[k==1 || k==n, 2, T[n-1,k,p,q,j] + T[n-1,k-1,p,q,j] + (p*j+q)*Prime[j]*T[n-2,k-1,p,q,j] ]]];
Table[T[n,k,2,7,10], {n,12}, {k,n}]//Flatten (* modified by G. C. Greubel, Mar 06 2021 *)
-
@CachedFunction
def f(n,j): return ((3-(-1)^n)/2)*nth_prime(j)^(n-1) - 2^((3-(-1)^n)/2)
def T(n,k,p,q,j):
if (n==2): return nth_prime(j)
elif (n==3 and k==2 or n==4 and 2<=k<=3): return f(n,j)
elif (k==1 or k==n): return 2
else: return T(n-1,k,2,7,10) + T(n-1,k-1,p,q,j) + (p*j+q)*nth_prime(j)*T(n-2,k-1,p,q,j)
flatten([[T(n,k,p,q,j) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Mar 06 2021