A180591
G.f.: A(x) = exp( Sum_{n>=1} 2^[A001511(n)^2]*x^n/n ) where A001511(n) is the exponent in the highest power of 2 that divides 2n.
Original entry on oeis.org
1, 2, 10, 18, 178, 338, 1450, 2562, 23234, 43906, 186602, 329298, 2276914, 4224530, 16898506, 29572482, 191488770, 353405058, 1394069578, 2434734098, 14073489714, 25712245330, 97969052778, 170225860226, 938475356354
Offset: 0
G.f.: A(x) = 1 + 2*x + 10*x^2 + 18*x^3 + 178*x^4 + 338*x^5 +...
log(A(x)) = 2^1*x + 2^4*x^2/2 + 2^1*x^3/3 + 2^9*x^4/4 + 2^1*x^5/5 + 2^4*x^6/6 + 2^1*x^7/7 + 2^16*x^8/8 +...+ 2^[A001511(n)^2]*x^n/n +...
-
{a(n)=polcoeff(exp(sum(m=1,n,2^(valuation(2*m,2)^2)*x^m/m)+x*O(x^n)),n)}
A202516
G.f.: exp( Sum_{n>=1} (2^n + 3^n)^n * x^n/n ).
Original entry on oeis.org
1, 5, 97, 14735, 22208431, 314664801905, 41448076127290195, 50905029765702161210225, 582983891132858366160979787245, 62080074367851800086180277369110042475, 61205889017397342360456211893643596980919936577
Offset: 0
G.f.: A(x) = 1 + 5*x + 97*x^2 + 14735*x^3 + 22208431*x^4 +...
where
log(A(x)) = (2+3)*x + (2^2 + 3^2)^2*x^2/2 + (2^3 + 3^3)^3*x^3/3 + (2^4 + 3^4)^4*x^4/4 + (2^5 + 3^5)^5*x^5/5 +...
more explicitly,
log(A(x)) = 5*x + 13^2*x^2/2 + 35^3*x^3/3 + 97^4*x^4/4 + 275^5*x^5/5 +...
A202517
G.f.: exp( Sum_{n>=1} (3^n - 2^n)^n * x^n/n ).
Original entry on oeis.org
1, 1, 13, 2299, 4465027, 83649932869, 14413888012788031, 22412828378864422506133, 312169717565869706933620630009, 38865154523992131836783382601539858727, 43266472789023671032936589458127528396392744933
Offset: 0
G.f.: A(x) = 1 + x + 13*x^2 + 2299*x^3 + 4465027*x^4 + 83649932869*x^5 +...
where
log(A(x)) = (3-2)*x + (3^2 - 2^2)^2*x^2/2 + (3^3 - 2^3)^3*x^3/3 + (3^4 - 2^4)^4*x^4/4 + (3^5 - 2^5)^5*x^5/5 +...
more explicitly,
log(A(x)) = x + 5^2*x^2/2 + 19^3*x^3/3 + 65^4*x^4/4 + 211^5*x^5/5 +...
A211897
G.f.: exp( Sum_{n>=1} (2^n + (-1)^n)^n * x^n/n ).
Original entry on oeis.org
1, 1, 13, 127, 21079, 5748277, 12575820727, 76137769800001, 2378969789430032869, 263966921383940194614823, 128008718415112846211347561597, 240383035701447602719960666753525867, 1863847508172945183054545696402414919578641
Offset: 0
G.f.: A(x) = 1 + x + 13*x^2 + 127*x^3 + 21079*x^4 + 5748277*x^5 +...
such that
log(A(x)) = x + 5^2*x^2 + 7^3*x^3 + 17^4*x^4 + 31^5*x^5 + 65^6*x^6 + 127^7*x^7 +...+ (2^n + (-1)^n)^n*x^n/n +...
-
{a(n)=polcoeff(exp(sum(k=1, n, (2^k+(-1)^k)^k*x^k/k)+x*O(x^n)), n)}
for(n=0, 20, print1(a(n), ", "))
A211898
G.f.: exp( Sum_{n>=1} (2^n - (-1)^n)^n * x^n/n ).
Original entry on oeis.org
1, 3, 9, 261, 13419, 7867287, 10444212819, 84955235950827, 2235017786095822257, 273416315791427558035965, 125533366255776787874473759857, 242979442003484538229530424638338553, 1852958949086213206247388599213928431454549
Offset: 0
G.f.: A(x) = 1 + 3*x + 9*x^2 + 261*x^3 + 13419*x^4 + 7867287*x^5 +...
such that
log(A(x)) = 3*x + 3^2*x^2/2 + 9^3*x^3/3 + 15^4*x^4/4 + 33^5*x^5/5 + 63^6*x^6/6 + 129^7*x^7/7 + 255^8*x^8/8 +...+ (2^n - (-1)^n)^n*x^n/n +...
-
{a(n)=polcoeff(exp(sum(k=1, n, (2^k-(-1)^k)^k*x^k/k)+x*O(x^n)), n)}
for(n=0, 20, print1(a(n), ", "))
A306063
O.g.f. A(x) satisfies: Sum_{n>=1} (2^n*x - A(x))^n / n = 0.
Original entry on oeis.org
2, 2, 68, 9398, 4833428, 9454918068, 72006088426248, 2165455076559211174, 259347215815106405220132, 124310299732163916975832447388, 239094057363977384232311742474570360, 1847535112178186477442381068773529944826172, 57378255829217503847229646446662951215946818659912, 7161580198468591866673993366959923994699839199088716021928
Offset: 1
O.g.f.: A(x) = 2*x + 2*x^2 + 68*x^3 + 9398*x^4 + 4833428*x^5 + 9454918068*x^6 + 72006088426248*x^7 + 2165455076559211174*x^8 + 259347215815106405220132*x^9 + 124310299732163916975832447388*x^10 + 239094057363977384232311742474570360*x^11 + 1847535112178186477442381068773529944826172*x^12 + ...
such that
0 = (2*x - A(x)) + (2^2*x - A(x))^2/2 + (2^3*x - A(x))^3/3 + (2^4*x - A(x))^4/4 + (2^5*x - A(x))^5/5 + (2^6*x - A(x))^6/6 + (2^7*x - A(x))^7/7 + ...
RELATED SERIES.
exp( Sum_{n>=1} 2^(n^2)*x^n / n ) = 1 + 2*x + 10*x^2 + 188*x^3 + 16774*x^4 + 6745436*x^5 + 11466849412*x^6 + 80444398636280*x^7 + ... + A155200(n)*x^n + ...
exp( Sum_{n>=1} A(x)^n / n ) = 1/(1 - A(x)) = 1 + 2*x + 6*x^2 + 84*x^3 + 9714*x^4 + 4872228*x^5 + 9474410908*x^6 + 72043987279208*x^7 + 2165743253217563938*x^8 + ...
Sum_{n>=1} A(x)^n / n = -log(1 - A(x)) = 2*x + 8*x^2/2 + 224*x^3/3 + 38192*x^4/4 + 24263312*x^5/5 + 56787868688*x^6/6 + 504175196453504*x^7/7 + ...
-
{a(n) = my(A=[2]); for(i=1,n, A = concat(A,0); A[#A] = polcoeff(sum(m=1,#A,(2^m*x - x*Ser(A))^m/m), #A));A[n]}
for(n=1,20,print1(a(n),", "))
A165940
G.f.: Sum_{n>=0} a(n)*x^n/2^(n^2+n) = exp( Sum_{n>=1} x^n/[n*2^(n^2)] ).
Original entry on oeis.org
1, 2, 10, 152, 7684, 1352096, 852120928, 1960591940480, 16697154282192928, 531801639623740649984, 63854080509077223292639744, 29089348119991257994736112048128
Offset: 0
G.f.: 1 + 2*x/2^2 + 10*x^2/2^6 + 152*x^3/2^12 + 7684*x^4/2^20 +...
= exp( x/2 + x^2/(2*2^4) + x^3/(3*2^9) + x^4/(4*2^16) +... ).
Evaluated at x=1:
Sum_{n>=0} a(n)/2^(n^2+n) = 1.7021716250154556344906565654972646...
A260756
G.f.: exp( Sum_{n>=1} 2^(n^n) * x^n/n ).
Original entry on oeis.org
1, 2, 10, 44739260, 28948022309329048855892746252171976963317496166410141009864396001978371888518
Offset: 0
G.f.: A(x) = 1 + 2*x + 10*x^2 + 44739260*x^3 +...
where
log(A(x)) = 2^1*x + 2^4*x^2/2 + 2^27*x^3/3 + 2^256*x^4/4 + 2^3125*x^5/5 + 2^46656*x^6/6 + 2^823543*x^7/7 + 2^16777216*x^8/8 +...+ 2^(n^n)*x^n/n +...
-
{a(n)=polcoeff(exp(sum(m=1, n+1, 2^(m^m)*x^m/m)+x*O(x^n)), n)}
for(n=0,7,print1(a(n),", "))
A381422
Expansion of g.f. = exp( Sum_{n>=1} A066802(n)*x^n/n ).
Original entry on oeis.org
1, 20, 662, 26780, 1205961, 58050204, 2924165436, 152231599628, 8125577046740, 442293253888592, 24457749066666142, 1370114821790970340, 77591333270514869230, 4434803157977731784808, 255492958449660158603448, 14820943641891118200315756, 864962304943085638764540396
Offset: 0
Comments