cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A155615 a(n) = 10^n - 3^n + 1.

Original entry on oeis.org

1, 8, 92, 974, 9920, 99758, 999272, 9997814, 99993440, 999980318, 9999940952, 99999822854, 999999468560, 9999998405678, 99999995217032, 999999985651094, 9999999956953280, 99999999870859838, 999999999612579512
Offset: 0

Views

Author

Mohammad K. Azarian, Jan 26 2009

Keywords

Crossrefs

Programs

Formula

G.f.: 1/(1-10*x)-1/(1-3*x)+1/(1-x).
E.g.f.: e^(10*x)-e^(3*x)+e^x.
a(n) = 13*a(n-1)-30*a(n-2)+18 with a(0)=1, a(1)=8. - Vincenzo Librandi, Jul 21 2010

A180741 Numbers k such that 5^k + 3^k - 1 is prime.

Original entry on oeis.org

1, 3, 9, 39, 165, 11289, 44979, 192321, 377865
Offset: 1

Views

Author

Vincenzo Librandi, Jan 22 2011

Keywords

Comments

No additional terms up to 5000. - Harvey P. Dale, Feb 01 2011
No additional terms up to 1000000. - Jon Grantham, Jul 29 2023

Crossrefs

Cf. A155603.

Programs

  • Magma
    [n: n in [0..1000]|IsPrime(5^n+3^n-1)]
    
  • Mathematica
    Select[Range[5000],PrimeQ[5^#+3^#-1]&]  (* Harvey P. Dale, Feb 01 2011 *)
  • PARI
    is(n)=ispseudoprime(5^n+3^n-1) \\ Charles R Greathouse IV, Jun 13 2017
    
  • Python
    from sympy import isprime
    def afind(limit, startk=1):
        pow5, pow3 = 5**startk, 3**startk
        for k in range(startk, limit+1):
            if isprime(pow5 + pow3 - 1): print(k, end=", ")
            pow5 *= 5; pow3 *= 3
    afind(1000) # Michael S. Branicky, Aug 21 2021

Extensions

a(6) from Michael S. Branicky, Aug 21 2021
a(7) from Michael S. Branicky, May 13 2023
a(8), a(9) from Jon Grantham, Jul 29 2023

A277122 Primes of the form 5^k + 3^k - 1.

Original entry on oeis.org

7, 151, 1972807, 1818989407598411628849054391, 21382117680737565169124291737211855035830505403680318251383549467509816267540836044857784735512271804718726595516967
Offset: 1

Views

Author

Alex Ratushnyak, Sep 30 2016

Keywords

Comments

The sequence of corresponding k starts: 1, 3, 9, 39, 165 (A180741).
Primes in A155603. - Altug Alkan, Oct 01 2016

Crossrefs

Programs

  • Mathematica
    Select[Table[5^k + 3^k - 1, {k, 0, 200}], PrimeQ] (* Amiram Eldar, Aug 11 2024 *)
  • PARI
    lista(kmax) = {my(p); for(k = 0, kmax, p = 5^k + 3^k - 1; if(isprime(p), print1(p, ", ")));} \\ Amiram Eldar, Aug 11 2024

Formula

a(n) = A155603(A180741(n)). - Amiram Eldar, Aug 11 2024
Previous Showing 11-13 of 13 results.