cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A155627 a(n) = 6^n - 4^n + 1.

Original entry on oeis.org

1, 3, 21, 153, 1041, 6753, 42561, 263553, 1614081, 9815553, 59417601, 358602753, 2160005121, 12993585153, 78095728641, 469111242753, 2816814940161, 16909479575553, 101491237191681, 609084862103553, 3655058928435201
Offset: 0

Views

Author

Mohammad K. Azarian, Jan 29 2009

Keywords

Crossrefs

Programs

Formula

O.g.f.: 1/(1 - 6*x) - 1/(1 - 4*x) + 1/(1 - x).
E.g.f.: exp(6*x) - exp(4*x) + exp(x).
a(n) = 10*a(n-1)-24*a(n-2)+15 with a(0)=1, a(1)=3 - Vincenzo Librandi, Jul 21 2010

A177027 Primes of the form 11^n+3^n-1.

Original entry on oeis.org

13, 19489357, 2357967373, 23225154419887808146560828362864653
Offset: 1

Views

Author

Vincenzo Librandi, Dec 09 2010

Keywords

Comments

The next term (a(5)) has 133 digits. - Harvey P. Dale, Jan 18 2024

Crossrefs

Programs

  • Magma
    [ a: n in [0..350] | IsPrime(a) where a is 11^n+3^n-1^n]
  • Mathematica
    Select[Table[11^n+3^n-1,{n,40}],PrimeQ] (* Harvey P. Dale, Jan 18 2024 *)

Formula

a(n) = 11^A177030(n)+3^A177030(n)-1.

A177030 Numbers k such that 11^k + 3^k - 1 is prime.

Original entry on oeis.org

1, 7, 9, 33, 127, 153, 2327, 3607, 14803, 16431
Offset: 1

Views

Author

Vincenzo Librandi, Dec 09 2010

Keywords

Comments

a(9) > 13518. - Daniel Starodubtsev, Apr 06 2020

Examples

			7 is in the sequence, because 11^7 + 3^7 - 1 = 19489357 is prime.
		

Crossrefs

Programs

  • Magma
    [n: n in [0..1500]|IsPrime(11^n+3^n-1^n)]
    
  • PARI
    is(n)=ispseudoprime(11^n+3^n-1) \\ Charles R Greathouse IV, Jun 13 2017

Formula

A177027(n) = 11^a(n)+3^a(n)-1.

Extensions

a(7)-a(8) from Daniel Starodubtsev, Apr 06 2020
a(9)-a(10) from Michael S. Branicky, Jul 15 2023
Previous Showing 11-13 of 13 results.