cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A257490 Irregular triangle read by rows in which the n-th row lists multinomials (A036040) for partitions of 2n which have only even parts in Abramowitz-Stegun ordering.

Original entry on oeis.org

1, 1, 3, 1, 15, 15, 1, 28, 35, 210, 105, 1, 45, 210, 630, 1575, 3150, 945, 1, 66, 495, 462, 1485, 13860, 5775, 13860, 51975, 51975, 10395, 1, 91, 1001, 3003, 3003, 45045, 42042, 105105, 45045, 630630, 525525, 315315, 1576575, 945945, 135135
Offset: 1

Views

Author

Hartmut F. W. Hoft, Apr 26 2015

Keywords

Comments

The length of row n is given by A000041(n).
Each entry in this irregular triangle is the quotient of the respective entries in A257468 and A096162, which is the multinomial called M_3 in Abramowitz-Stegun.
Has the same structure as the triangles in A036036, A096162, A115621 and A257468.

Examples

			Brackets group all partitions of the same length when there is more than one partition.
n/m  1    2          3           4    5
1:   1
2:   1    3
3:   1   15         15
4:   1  [28  35]   210         105
5:   1  [45 210]  [630 1575]  3150  945
...
n = 6:  1 [66 495 462] [1485 13860 5775] [13860 51975] 51975  0395
Replacing the bracketed numbers by their sums yields the triangle of A156289.
		

Crossrefs

Programs

  • Mathematica
    (* triangle2574868[] and triangle096162[] are defined as functions triangle[] in the respective sequences A257468 and A096162 *)
    triangle[n_] := triangle257468[n]/triangle096162[n]
    a[n_] := Flatten[triangle[n]]
    a[7] (* data *)

Extensions

Edited by Wolfdieter Lang, May 11 2015

A327417 a(n) = A291451(2*n, n).

Original entry on oeis.org

1, 1, 682, 7128576, 429120851544, 94066556834970720, 57496301859366489159040, 82247725949165261902606309120, 243263294602173417290925789755652480, 1356449073308047884259226117174893156252800, 13275987570857688650109290727617026478737341900800
Offset: 0

Views

Author

Peter Luschny, Sep 14 2019

Keywords

Crossrefs

Cf. A007820 (m=1), A327416 (m=2), this sequence (m=3), A327418 (m=4).
Associated triangles: A048993 (m=1), A156289 (m=2), A291451 (m=3), A291452 (m=4).

Programs

  • Sage
    # uses[P from A327416]
    def A327417(n): return P(3, 2*n).list()[n]//factorial(n)
    print([A327417(n) for n in range(11)])

A327418 a(n) = A291452(2*n, n).

Original entry on oeis.org

1, 1, 8255, 2941884000, 11957867341948125, 294040106448733743008625, 30188472144950452369737153667500, 10143939867539251013312279527292897925000, 9389957475743686923255643914812959599614184703125, 21058194888200109612591474039339954750056969537259132421875
Offset: 0

Views

Author

Peter Luschny, Sep 14 2019

Keywords

Crossrefs

Cf. A007820 (m=1), A327416 (m=2), A327417 (m=3), this sequence (m=4).
Associated triangles: A048993 (m=1), A156289 (m=2), A291451 (m=3), A291452 (m=4).

Programs

  • Sage
    # uses[P from A327416]
    def A327418(n): return P(4, 2*n).list()[n]//factorial(n)
    print([A327418(n) for n in range(10)])

A361948 Array read by ascending antidiagonals. A(n, k) = Product_{j=0..k-1} binomial((j + 1)*n - 1, n - 1) if n >= 1, and A(0, k) = 1 for all k.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 10, 15, 1, 1, 1, 1, 35, 280, 105, 1, 1, 1, 1, 126, 5775, 15400, 945, 1, 1, 1, 1, 462, 126126, 2627625, 1401400, 10395, 1, 1, 1, 1, 1716, 2858856, 488864376, 2546168625, 190590400, 135135, 1, 1
Offset: 0

Views

Author

Peter Luschny, Apr 13 2023

Keywords

Comments

Row n gives the leading coefficients of the set partition polynomials of type n. The sequence of these polynomial sequences starts: A097805, A048993, A156289, A291451, A291452, ...

Examples

			Array A(n, k) starts:
  [0] 1, 1,   1,       1,           1,                 1, ...
  [1] 1, 1,   1,       1,           1,                 1, ...
  [2] 1, 1,   3,      15,         105,               945, ...  A001147
  [3] 1, 1,  10,     280,       15400,           1401400, ...  A025035
  [4] 1, 1,  35,    5775,     2627625,        2546168625, ...  A025036
  [5] 1, 1, 126,  126126,   488864376,     5194672859376, ...  A025037
  [6] 1, 1, 462, 2858856, 96197645544, 11423951396577720, ...  A025038
.
Triangle A(n-k, k) starts:
  [0] 1;
  [1] 1, 1;
  [2] 1, 1,  1;
  [3] 1, 1,  1,   1;
  [4] 1, 1,  3,   1,   1;
  [5] 1, 1, 10,  15,   1, 1;
  [6] 1, 1, 35, 280, 105, 1, 1;
		

Crossrefs

Cf. A060540 (subarray), A370407 (antidiagonal sums, row sums).
Cf. A001147 (row 2), A025035 (row 3), A025036 (row 4), A025037 (row 5), A025038 (row 6), A025039 (row 7), A025040 (row 8), A025041 (row 9).
Cf. A088218 (column 2), A060542 (column 3), A082368 (column 4), A322252 (column 5), A057599 (main diagonal).

Programs

  • Maple
    A := (n, k) -> mul(binomial((j + 1)*n - 1, n - 1), j = 0..k-1):
    seq(seq(A(n-k, k), k = 0..n), n = 0..9);
    # Alternative, using recursion:
    A := proc(n, k) local P; P := proc(n, k) option remember;
    if n = 0 then return x^k*k! fi; if k = 0 then 1 else add(binomial(n*k, n*j)*
    P(n,k-j)*x, j=1..k) fi end: coeff(P(n, k), x, k) / k! end:
    seq(print(seq(A(n, k), k = 0..5)), n = 0..6);
    # Alternative, using exponential generating function:
    egf := n -> ifelse(n=0, 1, exp(x^n/n!)): ser := n -> series(egf(n), x, 8*n):
    row := n -> local k; seq((n*k)!*coeff(ser(n), x, n*k), k = 0..6):
    for n from 0 to 6 do [n], row(n) od;  # Peter Luschny, Aug 15 2024
  • Mathematica
    A[n_, k_] := Product[Binomial[n (j + 1) - 1, n - 1], {j, 0, k - 1}]; Table[A[n - k, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Michael De Vlieger, Apr 13 2023 *)
  • SageMath
    def Arow(n, size):
        if n == 0: return [1] * size
        return [prod(binomial((j + 1)*n - 1, n - 1) for j in range(k)) for k in range(size)]
    for n in range(7): print(Arow(n, 7))
    # Alternative, using exponential generating function:
    def SetPolyLeadCoeff(m, n):
        x, z = var("x, z")
        if m == 0: return 1
        w = exp(2 * pi * I / m)
        o = sum(exp(z * w ** k) for k in range(m)) / m
        t = exp(x * (o - 1)).taylor(z, 0, m*n)
        p = factorial(m*n) * t.coefficient(z, m*n)
        return p.leading_coefficient(x)
    for m in range(7):
        print([SetPolyLeadCoeff(m, k) for k in range(6)])

Formula

A(n, k) = (1/k!) * [x^k] P(n, k), where P(n, k) = k!*x^k if n = 0 and otherwise 1 if k = 0 and otherwise Sum_{j=1..k} binomial(n*k, n*j)*P(n, k-j)*x.
A(n, k) = (n*k)!*[x^(n*k)] exp(x^n/n!) for n >= 1. - Peter Luschny, Aug 15 2024

A156290 Triangle read by rows: alternating binomial coefficients with signs.

Original entry on oeis.org

1, -4, 1, 15, -6, 1, -56, 28, -8, 1, 210, -120, 45, -10, 1, -792, 495, -220, 66, -12, 1, 3003, -2002, 1001, -364, 91, -14, 1, -11440, 8008, -4368, 1820, -560, 120, -16, 1, 43758, -31824, 18564, -8568, 3060, -816, 153, -18, 1, -167960, 125970, -77520
Offset: 1

Views

Author

Hartmut F. W. Hoft, Feb 07 2009

Keywords

Comments

Alternating binomial coefficients in the closed form expression for sequence A156289.
The Example lines below show the connection with Pascal's triangle A007318.

Examples

			R(2,1)=-4, R(3,3)=1, R(4,2)=28.
Here is Pascal's triangle with the entries in the present triangle preceded by a *:
......................1
.....................1, 1
...................1, 2,*1
.................1, 3, 3, 1
................1, 4, 6,*4,*1
..............1, 5, 10, 10, 5, 1
............1, 6, 15, 20,*15,*6,*1
..........1, 7, 21, 35, 35, 21, 7, 1
........1, 8, 28, 56, 70,*56,*28,*8,*1
...
		

References

  • T. Myers and L. Shapiro, Some applications of the sequence 1, 5, 22, 93, 386, ... to Dyck paths and ordered trees, Congressus Numerant., 204 (2010), 93-104.

Crossrefs

Coefficient factor in elements of sequence A156289, the inverse of lower triangular matrix A156308.
Cf. A007318.

Programs

  • Mathematica
    R[m_] := Flatten[Table[(-1)^(k + j) Binomial[2 k, k + j], {k, 1, m}, {j, 1, k}]]

Formula

R(k,j)=(-1)^(k+j)*Binomial(2k,k+j), for 1<= j<=k, and 0 otherwise.

Extensions

Edited by N. J. A. Sloane, Apr 05 2011

A362370 Triangle read by rows. T(n, k) = ([x^k] P(n, x)) // k! where P(n, x) = Sum_{k=1..n} P(n - k, x) * x if n >= 1 and P(0, x) = 1. The notation 's // t' means integer division and is a shortcut for 'floor(s/t)'.

Original entry on oeis.org

1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 2, 1, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 1, 3, 2, 0, 0, 0, 0, 0, 1, 3, 3, 1, 0, 0, 0, 0, 0, 1, 4, 4, 2, 0, 0, 0, 0, 0, 0, 1, 4, 6, 3, 1, 0, 0, 0, 0, 0, 0, 1, 5, 7, 5, 1, 0, 0, 0, 0, 0, 0, 0, 1, 5, 9, 6, 2, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Peter Luschny, Apr 17 2023

Keywords

Comments

Row n gives the coefficients of the set partition polynomials of type m = 0 (the base case). The sequence of these polynomial sequences starts: this sequence, A048993, A156289, A291451, A291452, ...

Examples

			Triangle T(n, k) starts:
  [0] [1]
  [1] [0, 1]
  [2] [0, 1, 0]
  [3] [0, 1, 1, 0]
  [4] [0, 1, 1, 0, 0]
  [5] [0, 1, 2, 1, 0, 0]
  [6] [0, 1, 2, 1, 0, 0, 0]
  [7] [0, 1, 3, 2, 0, 0, 0, 0]
  [8] [0, 1, 3, 3, 1, 0, 0, 0, 0]
  [9] [0, 1, 4, 4, 2, 0, 0, 0, 0, 0]
		

Crossrefs

Cf. A097805, A362307 (row sums).
Cf. the family of partition polynomials: this sequence (m=0), A048993 (m=1), A156289 (m=2), A291451 (m=3), A291452 (m=4).

Programs

  • Maple
    T := (n, k) -> iquo(binomial(n - 1, k - 1), k!):
    seq(print(seq(T(n, k), k = 0..n)), n = 0..9);
  • SageMath
    R = PowerSeriesRing(ZZ, "x")
    x = R.gen().O(33)
    @cached_function
    def p(n) -> Polynomial:
        if n == 0: return R(1)
        return sum(p(n - k) * x for k in range(1, n + 1))
    def A362370_row(n) -> list[int]:
        L = p(n).list()
        return [L[k] // factorial(k) for k in range(n + 1)]
    for n in range(10):
        print(A362370_row(n))

Formula

T(n, k) = floor(A097805(n, k) / k!).

A318257 Triangle read by rows, expansion of the e.g.f. given below related to partitions of {1,2,...,5n} into sets of size 5, nonzero coefficients of z.

Original entry on oeis.org

1, 0, 1, 0, 1, 126, 0, 1, 3003, 126126, 0, 1, 107882, 23279256, 488864376, 0, 1, 3321890, 5319906900, 412275623760, 5194672859376, 0, 1, 107746281, 1394769716340, 369277150181940, 14687937509885640, 123378675083039376
Offset: 0

Views

Author

Peter Luschny, Aug 22 2018

Keywords

Examples

			[0] [1]
[1] [0, 1]
[2] [0, 1,     126]
[3] [0, 1,    3003,     126126]
[4] [0, 1,  107882,   23279256,    488864376]
[5] [0, 1, 3321890, 5319906900, 412275623760, 5194672859376]
		

Crossrefs

Cf. A048993 (m=1), A156289 (m=2), A291451 (m=3), A291452 (m=4), this seq (m=5).

Programs

  • Maple
    CL := p -> PolynomialTools:-CoefficientList(p, x):
    FL := p -> ListTools:-Flatten(p):
    f := z -> (1/5)*(exp(z)+2*(+exp(1/4*z*(5^(1/2)-1))*cos(1/4*z*2^(1/2)*
    (5+5^(1/2))^(1/2))+exp(-1/4*z*(5^(1/2)+1))*cos(1/4*z*2^(1/2)*(5-5^(1/2))^(1/2)))):
    gf := exp(x*(f(z)-1)): ser := series(gf, z, 48):
    FL([seq(CL(sort(expand((5*n)!*coeff(ser, z, n*5)), [x], ascending)),n=0..7)]);
Previous Showing 11-17 of 17 results.