cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A354668 Triangle read by rows: T(n,k) is the number of tilings of an (n+2*k) X 1 board using k (1,2;3)-combs and n-k squares.

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 2, 0, 1, 1, 3, 4, 0, 0, 1, 2, 5, 8, 0, 0, 1, 1, 3, 8, 12, 0, 3, 3, 0, 1, 4, 12, 18, 9, 12, 9, 0, 0, 1, 5, 16, 27, 25, 29, 27, 0, 0, 1, 1, 6, 21, 42, 51, 66, 54, 0, 6, 4, 0, 1, 7, 27, 62, 95, 135, 108, 36
Offset: 0

Views

Author

Michael A. Allen, Jul 30 2022

Keywords

Comments

This is the m=3, t=3 member of a two-parameter family of triangles such that T(n,k) is the number of tilings of an (n+(t-1)*k) X 1 board using k (1,m-1;t)-combs and n-k unit square tiles. A (1,g;t)-comb is composed of a line of t unit square tiles separated from each other by gaps of width g.
T(3*j+r-2*k,k) is the coefficient of x^k in (f(j,x))^(3-r)*(f(j+1,x))^r for r=0,1, where f(n,x) is a Narayana's cows polynomial defined by f(n,x)=f(n-1,x)+x*f(n-3,x)+delta(n,0) where f(n<0,x)=0.
T(n+6-2*k,k) is the number of subsets of {1,2,...,n} of size k such that no two elements in a subset differ by 3 or 6.

Examples

			Triangle begins:
  1;
  1,   0;
  1,   0,   0;
  1,   0,   0,   1;
  1,   0,   1,   2,   0;
  1,   1,   3,   4,   0,   0;
  1,   2,   5,   8,   0,   0,   1;
  1,   3,   8,  12,   0,   3,   3,   0;
  1,   4,  12,  18,   9,  12,   9,   0,   0;
  1,   5,  16,  27,  25,  29,  27,   0,   0,   1;
  1,   6,  21,  42,  51,  66,  54,   0,   6,   4,   0;
  1,   7,  27,  62,  95, 135, 108,  36,  30,  16,   0,   0;
...
		

Crossrefs

Sums over k of T(n-2*k,k) are A224810.
Other members of the family of triangles: A007318 (m=1,t=2), A059259 (m=2,t=2), A350110 (m=3,t=2), A350111 (m=4,t=2), A350112 (m=5,t=2), A354665 (m=2,t=3), A354666 (m=2,t=4), A354667 (m=2,t=5).
Other triangles related to tiling using combs: A059259, A123521, A157897, A335964.

Programs

  • Mathematica
    f[n_]:=If[n<0, 0, f[n-1]+x*f[n-3]+KroneckerDelta[n,0]]; T[n_, k_]:=Module[{j=Floor[(n+2*k)/3], r=Mod[n+2*k,3]}, Coefficient[f[j]^(3-r)*f[j+1]^r, x, k]]; Flatten@Table[T[n,k], {n, 0, 11}, {k, 0, n}]

Formula

T(n,0) = 1.
T(n,n) = delta(n mod 3,0).
T(n,1) = n-4 for n>3.
T(3*j-r,3*j-p) = 0 for j>0, p=1,2, and r=1-p,...,p.
T(n,2*j) = C(n/2,j)^2 for j>0 and n even and 2*j <= n <= 2*j+8.
T(n,2*j) = C((n-1)/2,j)*C((n+1)/2,j) for j>0 and n odd and 2*j < n < 2*j+8.
T(2*j+3*p,2*j-p) = C(j+3,4)^p for j>0 and p=0,1,2.
G.f. of sums of T(n-2*k,k) over k: (1+x^3-x^4-x^5+x^6-2*x^7-x^8-x^9-2*x^10-x^12-x^13-x^15)/((1-x)*(1+x+x^2)*(1-x-x^3)*(1+3*x^3+7*x^6+9*x^9+7*x^12+3*x^15+x^18)).
T(n,k) = T(n-1,k) + T(n-1,k-1) for n>=4*k+1 if k>=0.

A120415 Expansion of 1/(1-x-x^3-x^6).

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 7, 11, 16, 25, 39, 59, 91, 141, 216, 332, 512, 787, 1210, 1863, 2866, 4408, 6783, 10436, 16054, 24700, 38002, 58464, 89947, 138385, 212903, 327550, 503937, 775304, 1192801, 1835123, 2823330, 4343681, 6682741, 10281375, 15817857, 24335721
Offset: 0

Views

Author

Jon E. Schoenfield, Aug 27 2006

Keywords

Comments

Number of compositions of n into parts 1, 3, and 6. [Joerg Arndt, Sep 03 2013]

Crossrefs

Cf. A157897.

Programs

  • Magma
    I:=[1,1,1,2,3,4]; [n le 6 select I[n] else Self(n-1)+Self(n-3)+Self(n-6): n in [1..40]]; // Vincenzo Librandi, Sep 03 2013
    
  • Mathematica
    CoefficientList[Series[1/(1-x-x^3-x^6), {x, 0, 40}], x] (* Vincenzo Librandi, Sep 03 2013 *)
  • SageMath
    def A120415_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 1/(1-x-x^3-x^6) ).list()
    A120415_list(40) # G. C. Greubel, Sep 02 2022

Formula

a(n) = a(n-1) + a(n-3) + a(n-6).
a(n) = Sum_{k=0..floor(n/2)} A157897(n-k, k). - G. C. Greubel, Sep 02 2022
Previous Showing 11-12 of 12 results.