A217476
Coefficient triangle for the square of the monic integer Chebyshev T-polynomials A127672.
Original entry on oeis.org
4, 0, 1, 4, -4, 1, 0, 9, -6, 1, 4, -16, 20, -8, 1, 0, 25, -50, 35, -10, 1, 4, -36, 105, -112, 54, -12, 1, 0, 49, -196, 294, -210, 77, -14, 1, 4, -64, 336, -672, 660, -352, 104, -16, 1, 0, 81, -540, 1386, -1782, 1287, -546, 135, -18, 1, 4, -100, 825, -2640, 4290, -4004, 2275, -800, 170, -20, 1
Offset: 0
The triangle begins:
n\k 0 1 2 3 4 5 6 7 8 9 10
0: 4
1: 0 1
2: 4 -4 1
3: 0 9 -6 1
4: 4 -16 20 -8 1
5: 0 25 -50 35 -10 1
6: 4 -36 105 -112 54 -12 1
7: 0 49 -196 294 -210 77 -14 1
8: 4 -64 336 -672 660 -352 104 -16 1
9: 0 81 -540 1386 -1782 1287 -546 135 -18 1
10: 4 -100 825 -2640 4290 -4004 2275 -800 170 -20 1
...
n=2: R(2,x) = -2 + y, R(2,x)^2 = 4 -4*y + y^2, with y=x^2.
n=3: R(3,x) = 3*x - x^3, R(3,x)^2 = 9*y - 6*y^2 +y^3, with y=x^2.
T(4,1) = 8*(-1)^3*binomial(5,3)/5 = -16.
T(4,0) = 2 + 8*(-1)^4*binomial(4,4)/4 = 4.
T(n,1) = (-1)^(n-1)*2*n*(n+1)!/((n-1)!*2!*(n+1)) = -((-1)^n)*n^2 = A162395(n), n >= 1.
T(n,2) = (-1)^n*A002415(n), n >= 0.
T(n,3) = -(-1)^n*A040977(n-3), n >= 3.
T(n,4) = (-1)^n*A053347(n-4), n >= 4.
T(n,5) = -(-1)^n*A054334(n-5), n >= 5.
- E Hetmaniok, P Lorenc, S Damian, et al., Periodic orbits of boundary logistic map and new kind of modified Chebyshev polynomials in R. Witula, D. Slota, W. Holubowski (eds.), Monograph on the Occasion of 100th Birthday Anniversary of Zygmunt Zahorski. Wydawnictwo Politechniki Slaskiej, Gliwice 2015, pp. 325-343.
A181878
Coefficient array for square of Chebyshev S-polynomials.
Original entry on oeis.org
1, 1, 1, -2, 1, 4, -4, 1, 1, -6, 11, -6, 1, 9, -24, 22, -8, 1, 1, -12, 46, -62, 37, -10, 1, 16, -80, 148, -128, 56, -12, 1, 1, -20, 130, -314, 367, -230, 79, -14, 1, 25, -200, 610, -920, 771, -376, 106, -16, 1, 1, -30, 295, -1106, 2083, -2232, 1444, -574, 137, -18, 1, 36, -420, 1897, -4352, 5776, -4744, 2486, -832, 172, -20, 1, 1, -42, 581, -3108, 8518, -13672, 13820, -9142, 4013, -1158, 211, -22, 1
Offset: 0
The irregular triangle a(n,m) begins:
n\m 0 1 2 3 4 5 6 7 8 9 10 ...
0: 1
1: 1
2: 1 -2 1
3: 4 -4 1
4: 1 -6 11 -6 1
5: 9 -24 22 -8 1
6: 1 -12 46 -62 37 -10 1
7: 16 -80 148 -128 56 -12 1
8: 1 -20 130 -314 367 -230 79 -14 1
9: 25 -200 610 -920 771 -376 106 -16 1
10: 1 -30 295 -1106 2083 -2232 1444 -574 137 -18 1
... Reformatted and extended by _Wolfdieter Lang_, Nov 24 2012
-
Join[{{1}, {1}}, CoefficientList[Table[ChebyshevU[n, Sqrt[x]/2]^2, {n, 2, 10}], x]] // Flatten (* Eric W. Weisstein, Apr 04 2018 *)
Join[{{1}, {1}}, CoefficientList[ChebyshevU[Range[2, 10], Sqrt[x]/2]^2, x]] // Flatten (* Eric W. Weisstein, Apr 04 2018 *)
A219240
Coefficient array for the cube of Chebyshev's S polynomials.
Original entry on oeis.org
1, 0, 0, 0, 1, -1, 0, 3, 0, -3, 0, 1, 0, 0, 0, -8, 0, 12, 0, -6, 0, 1, 1, 0, -9, 0, 30, 0, -45, 0, 30, 0, -9, 0, 1, 0, 0, 0, 27, 0, -108, 0, 171, 0, -136, 0, 57, 0, -12, 0, 1, -1, 0, 18, 0, -123, 0, 399, 0, -651, 0, 588, 0, -308, 0, 93, 0, -15, 0, 1, 0, 0, 0, -64, 0, 480, 0, -1488, 0, 2488, 0, -2472, 0, 1524, 0, -588, 0, 138, 0, -18, 0, 1
Offset: 0
The array a(n,m) begins:
n\m 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
n=0: 1
n=1: 0 0 0 1
n=2: -1 0 3 0 -3 0 1
n=3: 0 0 0 -8 0 12 0 -6 0 1
n=4: 1 0 -9 0 30 0 -45 0 30 0 -9 0 1
n=5: 0 0 0 27 0 -108 0 171 0 -136 0 57 0 -12 0 1
...
Row n=6: [-1, 0, 18, 0, -123, 0, 399, 0, -651, 0, 588, 0, -308, 0, 93, 0, -15, 0, 1],
Row n=7: [0, 0, 0, -64, 0, 480, 0, -1488, 0, 2488, 0, -2472, 0, 1524, 0, -588, 0, 138, 0, -18, 0, 1],
Row n=8: [1, 0, -30, 0, 345, 0, -1921, 0, 5598, 0, -9540, 0, 10212, 0, -7137, 0, 3303, 0, -1003, 0, 192, 0, -21, 0, 1].
n=2: S(2,x)^3 = (x^2 - 1)^3 = -1 + 3*x^2 - 3*x^4 + x^6.
n=3: S(3,x)^3 = (x^3 - 2*x)^3 = -8*x^3 + 12*x^5 - 6*x^7 + x^9.
A219234
Coefficient array for the fourth power of Chebyshev's S-polynomials as a function of x^2.
Original entry on oeis.org
1, 0, 0, 1, 1, -4, 6, -4, 1, 0, 0, 16, -32, 24, -8, 1, 1, -12, 58, -144, 195, -144, 58, -12, 1, 0, 0, 81, -432, 972, -1200, 886, -400, 108, -16, 1, 1, -24, 236, -1228, 3678, -6612, 7490, -5532, 2701, -864, 174, -20, 1, 0, 0, 256, -2560, 11136, -27776, 44176, -47232, 34912, -18048, 6504, -1600, 256, -24, 1
Offset: 0
The irregular triangle a(n, m) starts:
n\m 0 1 2 3 4 5 6 7 8 9 10 11 12
0: 1
1: 0 0 1
2: 1 -4 6 -4 1
3: 0 0 16 -32 24 -8 1
4: 1 -12 58 -144 195 -144 58 -12 1
5: 0 0 81 -432 972 -1200 886 -400 108 -16 1
6: 1 -24 236 -1228 3678 -6612 7490 -5532 2701 -864 174 -20 1
...
Row n=7: [0, 0, 256, -2560, 11136, -27776, 44176, -47232, 34912, -18048, 6504, -1600, 256, -24, 1].
Row n=8: [1, -40, 660, -5828, 30194, -96780, 203374, -293464, 300231, -222112, 119938, -47244, 13415, -2672, 354, -28, 1].
Row n=1 polynomial p(1,x) = 1*x^2 = S(1,sqrt(x))^4 = (sqrt(x))^4.
Row n=2 polynomial p(2,x) = 1 - 4*x + 6*x^2 - 4*x^3 + 1*x^4 =
S(2,sqrt(x))^4 = (-1+x)^4.
Comments