cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-23 of 23 results.

A354785 Numbers of the form 3*2^k or 9*2^k.

Original entry on oeis.org

3, 6, 9, 12, 18, 24, 36, 48, 72, 96, 144, 192, 288, 384, 576, 768, 1152, 1536, 2304, 3072, 4608, 6144, 9216, 12288, 18432, 24576, 36864, 49152, 73728, 98304, 147456, 196608, 294912, 393216, 589824, 786432, 1179648, 1572864, 2359296, 3145728, 4718592, 6291456, 9437184, 12582912, 18874368, 25165824, 37748736, 50331648
Offset: 1

Views

Author

N. J. A. Sloane, Jul 12 2022

Keywords

Crossrefs

The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A029744 = {s(n), n>=1}, the numbers 2^k and 3*2^k, as the parent: A029744 (s(n)); A052955 (s(n)-1), A027383 (s(n)-2), A354788 (s(n)-3), A347789 (s(n)-4), A209721 (s(n)+1), A209722 (s(n)+2), A343177 (s(n)+3), A209723 (s(n)+4); A060482, A136252 (minor differences from A354788 at the start); A354785 (3*s(n)), A354789 (3*s(n)-7). The first differences of A029744 are 1,1,1,2,2,4,4,8,8,... which essentially matches eight sequences: A016116, A060546, A117575, A131572, A152166, A158780, A163403, A320770. The bisections of A029744 are A000079 and A007283.

Programs

  • Mathematica
    seq[max_] := Union[Table[3*2^n, {n, 0, Floor[Log2[max/3]]}], Table[9*2^n, {n, 0, Floor[Log2[max/9]]}]]; seq[10^8] (* Amiram Eldar, Jan 16 2024 *)

Formula

Sum_{n>=1} 1/a(n) = 8/9. - Amiram Eldar, Jan 16 2024
G.f.: (3*x^2+6*x+3)/(1-2*x^2). - Georg Fischer, Apr 10 2025

A160444 Expansion of g.f.: x^2*(1 + x - x^2)/(1 - 2*x^2 - 2*x^4).

Original entry on oeis.org

0, 1, 1, 1, 2, 4, 6, 10, 16, 28, 44, 76, 120, 208, 328, 568, 896, 1552, 2448, 4240, 6688, 11584, 18272, 31648, 49920, 86464, 136384, 236224, 372608, 645376, 1017984, 1763200, 2781184, 4817152, 7598336, 13160704, 20759040, 35955712, 56714752
Offset: 1

Views

Author

Willibald Limbrunner (w.limbrunner(AT)gmx.de), May 14 2009

Keywords

Comments

This sequence is the case k=3 of a family of sequences with recurrences a(2*n+1) = a(2*n) + a(2*n-1), a(2*n+2) = k*a(2*n-1) + a(2*n), a(1)=0, a(2)=1. Values of k, for k >= 0, are given by A057979 (k=0), A158780 (k=1), A002965 (k=2), this sequence (k=3). See "Family of sequences for k" link for other connected sequences.
It seems that the ratio of two successive numbers with even, or two successive numbers with odd, indices approaches sqrt(k) for these sequences as n-> infinity.
This algorithm can be found in a historical figure named "Villardsche Figur" of the 13th century. There you can see a geometrical interpretation.

Crossrefs

Programs

  • Magma
    I:=[0,1,1,1]; [n le 4 select I[n] else 2*(Self(n-2) +Self(n-4)): n in [1..40]]; // G. C. Greubel, Feb 18 2023
    
  • Mathematica
    LinearRecurrence[{0,2,0,2}, {0,1,1,1}, 40] (* G. C. Greubel, Feb 18 2023 *)
  • SageMath
    @CachedFunction
    def a(n): # a = A160444
        if (n<5): return ((n+1)//3)
        else: return 2*(a(n-2) + a(n-4))
    [a(n) for n in range(1, 41)] # G. C. Greubel, Feb 18 2023

Formula

a(n) = 2*a(n-2) + 2*a(n-4).
a(2*n+1) = A002605(n).
a(2*n) = A026150(n-1).

Extensions

Edited by R. J. Mathar, May 14 2009

A206474 Riordan array ((1+x-x^2)/(1-x^2), x/(1-x^2)).

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 2, 2, 1, 1, 1, 1, 3, 3, 1, 1, 0, 3, 3, 4, 4, 1, 1, 1, 1, 6, 6, 5, 5, 1, 1, 0, 4, 4, 10, 10, 6, 6, 1, 1, 1, 1, 10, 10, 15, 15, 7, 7, 1, 1, 0, 5, 5, 20, 20, 21, 21, 8, 8, 1, 1, 1, 1, 15, 15, 35, 35, 28, 28, 9, 9, 1, 1
Offset: 0

Views

Author

Philippe Deléham, Feb 08 2012

Keywords

Comments

Triangle T(n,k), read by rows, given by (1, -1, -1, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
Antidiagonal sums are A158780(n+1).
Row sums are 2*Fibonacci(n) = 2*A000045(n), n>0.

Examples

			Triangle begins :
1
1, 1
0, 1, 1
1, 1, 1, 1
0, 2, 2, 1, 1
1, 1, 3, 3, 1, 1
0, 3, 3, 4, 4, 1, 1
1, 1, 6, 6, 5, 5, 1, 1
0, 4, 4, 10, 10, 6, 6, 1, 1
1, 1, 10, 10, 15, 15, 7, 7, 1, 1
0, 5, 5, 20, 20, 21, 21, 8, 8, 1, 1
1, 1, 15, 15, 35, 35, 28, 28, 9, 9, 1, 1
		

Crossrefs

Programs

  • Mathematica
    t[1, 0] = 1; t[2, 0] = 0; t[n_, n_] = 1; t[n_ /; n >= 0, k_ /; k >= 0] /; k <= n := t[n, k] = t[n-1, k-1] + t[n-2, k]; t[n_, k_] = 0; Table[t[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 28 2013 *)

Formula

T(2n, 2k) = A128908(n,k), T(2n+1, 2k) = T(2n+1, 2k+1) = A085478(n,k) = Binomial (n+k, 2k), T(2n+2, 2k+1) = A078812(n,k) = Binomial(n+k-1, 2k-1).
T(n,k) = T(n-1,k-1) + T(n-2,k), T(0,0) = T(0,1) = 1, T(0,2) = 0.
G.f.: (1+x-x^2)/(1-x*y-x^2).
Sum_{k, 0<=k<=n} T(n,k)*x^k = (-1)^n* A000129(n) (n>0), A000007(n), A135528(n-1), A055389(n) for x = -2, -1, 0, 1 respectively .
Previous Showing 21-23 of 23 results.