cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A228027 Primes of the form 4^k + 9.

Original entry on oeis.org

13, 73, 1033, 262153, 1073741833, 73786976294838206473, 4835703278458516698824713
Offset: 1

Views

Author

Vincenzo Librandi, Aug 11 2013

Keywords

Comments

Subsequence of A104070. - Elmo R. Oliveira, Nov 28 2023

Examples

			262153 is a term because 4^9 + 9 = 262153 is prime.
		

Crossrefs

Cf. A000040, A217350 (corresponding k's).
Cf. Primes of the form r^k + h: A092506 (r=2, h=1), A057733 (r=2, h=3), A123250 (r=2, h=5), A104066 (r=2, h=7), A104070 (r=2, h=9), A057735 (r=3, h=2), A102903 (r=3, h=4), A102870 (r=3, h=8), A102907 (r=3, h=10), A290200 (r=4, h=1), A228026 (r=4, h=3), this sequence (r=4, h=9), A182330 (r=5, h=2), A228029 (r=5, h=6), A102910 (r=5, h=8), A182331 (r=6, h=1), A104118 (r=6, h=5), A104115 (r=6, h=7), A104065 (r=7, h=4), A228030 (r=7, h=6), A228031 (r=7, h=10), A228032 (r=8, h=3), A228033 (r=8, h=5), A144360 (r=8, h=7), A145440 (r=8, h=9), A228034 (r=9, h=2), A159352 (r=10, h=3), A159031 (r=10, h=7).

Programs

  • Magma
    [a: n in [0..200] | IsPrime(a) where a is 4^n+9];
  • Mathematica
    Select[Table[4^n + 9, {n, 0, 200}],PrimeQ]

Formula

a(n) = 4^A217350(n) + 9. - Elmo R. Oliveira, Nov 28 2023

Extensions

Corrected cross-references - Robert Price, Aug 01 2017

A228033 Primes of the form 8^k + 5.

Original entry on oeis.org

13, 2787593149816327892691964784081045188247557, 15177100720513508366558296147058741458143803430094840009779784451085189728165691397
Offset: 1

Views

Author

Vincenzo Librandi, Aug 11 2013

Keywords

Comments

a(4) = 8^64655 + 5 = 1.919...*10^58389 is too large to include. - Amiram Eldar, Jul 23 2025

Crossrefs

Cf. A217355 (associated n).
Cf. Primes of the form k^n + h: A092506 (k=2, h=1), A057733 (k=2, h=3), A123250 (k=2, h=5), A104066 (k=2, h=7), A104070 (k=2, h=9), A057735 (k=3, h=2), A102903 (k=3, h=4), A102870 (k=3, h=8), A102907 (k=3, h=10), A290200 (k=4, h=1), A182330 (k=5, h=2), A102910 (k=5, h=8), A182331 (k=6, h=1), A104118 (k=6, h=5), A104115 (k=6, h=7), A104065 (k=7, h=4), this sequence (k=8, h=5), A144360 (k=8, h=7), A145440 (k=8, h=9), A228034 (k=9, h=2), A159352 (k=10, h=3), A159031 (k=10, h=7).

Programs

  • Magma
    [a: n in [1..300] | IsPrime(a) where a is 8^n+5];
  • Mathematica
    Select[Table[8^n + 5, {n, 4000}], PrimeQ]

A228028 Primes of the form 5^n + 4.

Original entry on oeis.org

5, 29, 15629, 9765629
Offset: 1

Views

Author

Vincenzo Librandi, Aug 11 2013

Keywords

Crossrefs

Cf. A124621 (associated n).
Cf. Primes of the form k^n + h: A092506 (k=2, h=1), A057733 (k=2, h=3), A123250 (k=2, h=5), A104066 (k=2, h=7), A104070 (k=2, h=9), A057735 (k=3, h=2), A102903 (k=3, h=4), A102870 (k=3, h=8), A102907 (k=3, h=10), A290200 (k=4, h=1), A228027 (k=4, h=9), A182330 (k=5, h=2), this sequence (k=5, h=4), A228029 (k=5, h=6), A102910 (k=5, h=8), A182331 (k=6, h=1), A104118 (k=6, h=5), A104115 (k=6, h=7), A104065 (k=7, h=4), A228030 (k=7, h=6), A228031 (k=7, h=10), A228032 (k=8, h=3), A228033 (k=8, h=5), A144360 (k=8, h=7), A145440 (k=8, h=9), A228034 (k=9, h=2), A159352 (k=10, h=3), A159031 (k=10, h=7).

Programs

  • Magma
    [a: n in [0..200] | IsPrime(a) where a is  5^n+4];
  • Mathematica
    Select[Table[5^n + 4, {n, 0, 200}], PrimeQ]

Extensions

Corrected cross-references - Robert Price, Aug 01 2017

A356987 Primes whose decimal expansion is 1, zero or more 0's, then a single digit.

Original entry on oeis.org

11, 13, 17, 19, 101, 103, 107, 109, 1009, 10007, 10009, 100003, 1000003, 100000007, 1000000007, 1000000009, 100000000003, 100000000000000003, 1000000000000000003, 1000000000000000009, 10000000000000000000009, 1000000000000000000000007
Offset: 1

Views

Author

Marco RipĂ , Sep 08 2022

Keywords

Comments

The sequence is a subsequence of A139054.
All the terms of this sequence are of the form 10^k + m, where m belongs to the set {1, 3, 7, 9} and k is a nonnegative integer.
If a term is of the form 10^k+m and k is odd, then m > 1. - Chai Wah Wu, Oct 22 2022

Examples

			1000000007 is a term because it is a prime number whose decimal expansion is 1, 8 zeros, then the single digit 7.
		

Crossrefs

Programs

Previous Showing 11-14 of 14 results.