cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-26 of 26 results.

A274354 Number of factors L(i) > 1 of A274281(n), where L = A000032 (Lucas numbers, 2,1,3,4,..., with 1 excluded).

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 2, 2, 3, 2, 1, 2, 2, 3, 2, 1, 2, 3, 2, 3, 2, 1, 2, 3, 2, 3, 2, 3, 2, 1, 2, 3, 2, 3, 2, 3, 4, 3, 2, 2, 1, 2, 3, 2, 3, 3, 2, 3, 4, 3, 2, 3, 2, 1, 2, 3, 2, 3, 3, 3, 2, 3, 4, 3, 4, 2, 3, 2, 1, 2, 2, 3, 3, 2, 3, 3, 4, 3, 2, 3, 4, 3
Offset: 1

Views

Author

Clark Kimberling, Jun 18 2016

Keywords

Examples

			The products of distinct Lucas numbers (including 2, excluding 1), arranged in increasing order, comprise A274281 (with 1 removed).  The list begins with 2, 3, 4, 6 = 2*3, 7, 8 = 2*4, 11, 12, 14, 18, 21, 22, 24 = 2*3*4, so that a(4) = 2, a(6) = 2, a(13) = 3.
		

Crossrefs

Programs

  • Mathematica
    r[1] := 2; r[2] := 1; r[n_] := r[n] = r[n - 1] + r[n - 2];
    s = {1}; z = 40; f = Join[{2}, Map[r, 2 + Range[z]]]; Take[f, 10]
    Do[s = Union[s, Select[s*f[[i]], # <= f[[z]] &]], {i, z}];
    infQ[n_] := MemberQ[f, n];
    ans = Table[#[[Flatten[Position[Map[Apply[Times, #] &, #], s[[n]]]][[1]]]] &[
    Rest[Subsets[Map[#[[1]] &, Select[Map[{#, infQ[#]} &,
    Divisors[s[[n]]]], #[[2]] && #[[1]] > 1 &]]]]], {n, 2, 200}];
    Take[ans, 10]
    w = Map[Length, ans]
    Map[Apply[Times, #] &, Select[ans, Length[#] == 2 &]] (* A274349 *)
    Map[Apply[Times, #] &, Select[ans, Length[#] == 3 &]] (* A274350 *)
    (* Peter J. C. Moses, Jun 17 2016 *)

A274371 Numbers that are a product of distinct Fibonacci numbers (A000045) and also a product of distinct Lucas numbers (A000032, including 2).

Original entry on oeis.org

1, 2, 3, 6, 8, 21, 24, 42, 126, 144, 168, 432, 504, 987, 1008, 1974, 3024, 5922, 7896, 23688, 46368, 47376, 139104, 142128, 973728, 2178309, 4356618, 13069854, 17426472, 45765216, 52279416, 104558832, 313676496, 4807526976, 14422580928, 100958066496
Offset: 1

Views

Author

Clark Kimberling, Jun 19 2016

Keywords

Comments

Contains A273803 as a subsequence.

Examples

			504 = 3*8*21 = 4*7*18.
		

Crossrefs

Programs

  • Mathematica
    s = {1}; z = 60; f = Fibonacci[2 + Range[z]]; Do[s = Union[s, Select[s*f[[i]], # <= f[[z]] &]], {i, z}]; s = Prepend[s, 0];  u = Take[s, 100]
    g = LucasL[-1 + Range[z]]; t = {1}; Do[t = Union[t, Select[t*g[[i]], # <= g[[z]] &]], {i, z}]; w = Intersection[s, t]

A274453 Products of distinct numbers in A052963.

Original entry on oeis.org

2, 5, 10, 14, 28, 40, 70, 80, 115, 140, 200, 230, 331, 400, 560, 575, 662, 953, 1120, 1150, 1610, 1655, 1906, 2744, 2800, 3220, 3310, 4600, 4634, 4765, 5488, 5600, 7901, 8050, 9200, 9268, 9530, 13240, 13342, 13720, 15802, 16100, 22750, 23000, 23170, 26480
Offset: 1

Views

Author

Clark Kimberling, Jun 23 2016

Keywords

Examples

			The numbers in A274453 are 1, 2, 5, 14, 40, 115, 331,..., so that the sequence of all products of distinct members, in increasing order, is (2, 5, 10, 14, 28, 40, 70, 80,...).
		

Crossrefs

Programs

  • Mathematica
    r[1] := 1; r[2] := 1; r[3] = 1; r[n_] := r[n] = 3 r[n - 1] - r[n - 3]
    s = {1}; z = 30; f = Map[r, Range[z]]; Take[f, 20] (* A052963 *)
    Do[s = Union[s, Select[s*f[[i]], # <= f[[z]] &]], {i, z}];
    Take[s, 2 z]  (* A274453 *)

A274454 Products of distinct numbers in the Pell sequence (A000129).

Original entry on oeis.org

2, 5, 10, 12, 24, 29, 58, 60, 70, 120, 140, 145, 169, 290, 338, 348, 350, 408, 696, 700, 816, 840, 845, 985, 1680, 1690, 1740, 1970, 2028, 2030, 2040, 2378, 3480, 4056, 4060, 4080, 4200, 4756, 4896, 4901, 4925, 5741, 8400, 9792, 9802, 9850, 10140, 10150
Offset: 1

Views

Author

Clark Kimberling, Jun 23 2016

Keywords

Examples

			The numbers in A274454 are 1, 2, 5, 12, 29, 70, 169, 408,..., so that the sequence of all products of distinct members, in increasing order, is (2, 5, 10, 12, 24, 29, 58, 60,...).
		

Crossrefs

Programs

  • Mathematica
    r[1] = 1; r[2] = 2; r[n_] := r[n] = 2 r[n - 1] + r[n - 2]
    s = {1}; z = 30; f = Map[r, Range[z]]; Take[f, 20] (* A000129 *)
    Do[s = Union[s, Select[s*f[[i]], # <= f[[z]] &]], {i, z}];
    Take[s, 2 z]  (* A274454 *)

A309840 If n = Sum (2^e_k) then a(n) = Product (Fibonacci(e_k + 3)).

Original entry on oeis.org

1, 2, 3, 6, 5, 10, 15, 30, 8, 16, 24, 48, 40, 80, 120, 240, 13, 26, 39, 78, 65, 130, 195, 390, 104, 208, 312, 624, 520, 1040, 1560, 3120, 21, 42, 63, 126, 105, 210, 315, 630, 168, 336, 504, 1008, 840, 1680, 2520, 5040, 273, 546, 819, 1638, 1365, 2730, 4095, 8190
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 19 2019

Keywords

Examples

			23 = 2^0 + 2^1 + 2^2 + 2^4 so a(23) = Fibonacci(3) * Fibonacci(4) * Fibonacci(5) * Fibonacci(7) = 390.
		

Crossrefs

Programs

  • Mathematica
    nmax = 55; CoefficientList[Series[Product[(1 + Fibonacci[k + 3] x^(2^k)), {k, 0, Floor[Log[2, nmax]] + 1}], {x, 0, nmax}], x]
    a[0] = 1; a[n_] := Fibonacci[Floor[Log[2, n]] + 3] a[n - 2^Floor[Log[2, n]]]; Table[a[n], {n, 0, 55}]
  • PARI
    a(n)={vecprod([fibonacci(k+2) | k<-Vec(select(b->b, Vecrev(digits(n, 2)), 1))])} \\ Andrew Howroyd, Aug 19 2019

Formula

G.f.: Product_{k>=0} (1 + Fibonacci(k + 3) * x^(2^k)).
a(0) = 1; a(n) = Fibonacci(floor(log_2(n)) + 3) * a(n - 2^floor(log_2(n))).
a(2^(k-2)-1) = A003266(k).

A376807 Products of distinct prime Fibonacci numbers.

Original entry on oeis.org

1, 2, 3, 5, 6, 10, 13, 15, 26, 30, 39, 65, 78, 89, 130, 178, 195, 233, 267, 390, 445, 466, 534, 699, 890, 1157, 1165, 1335, 1398, 1597, 2314, 2330, 2670, 3029, 3194, 3471, 3495, 4791, 5785, 6058, 6942, 6990, 7985, 9087, 9582, 11570, 15145, 15970, 17355, 18174
Offset: 1

Views

Author

Jack Brennen, Oct 04 2024

Keywords

Comments

Each term is a product of a finite subsequence of A005478.

Crossrefs

Programs

  • Python
    import itertools, math, sympy
    def fibprimegen(limit):  # Generate Fibonacci primes <= limit
      a,b = 1,2
      while b <= limit:
        if sympy.isprime(b):
          yield b
        a,b = b,a+b
    LIMIT=1000000
    fibprimes=list(fibprimegen(LIMIT))
    fibprimeseqs=itertools.chain.from_iterable(
        itertools.combinations(fibprimes,n) for n in range(len(fibprimes)+1))
    print(sorted(a for a in map(math.prod,fibprimeseqs) if a <= LIMIT))
Previous Showing 21-26 of 26 results.