cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-23 of 23 results.

A025549 a(n) = (2n-1)!!/lcm{1,3,5,...,2n-1}.

Original entry on oeis.org

1, 1, 1, 1, 3, 3, 3, 45, 45, 45, 945, 945, 4725, 42525, 42525, 42525, 1403325, 49116375, 49116375, 1915538625, 1915538625, 1915538625, 86199238125, 86199238125, 603394666875, 30773128010625, 30773128010625, 1692522040584375, 96473756313309375, 96473756313309375
Offset: 1

Views

Author

Keywords

Crossrefs

Not always equal to the second left hand column of A161198 triangle divided by A074599. - Johannes W. Meijer, Jun 08 2009
Cf. A196274 (run lengths of equal terms).

Programs

  • Maple
    seq(doublefactorial(2*n-1)/lcm(seq((2*k-1), k=1..n)), n=1..27) ; # Johannes W. Meijer, Jun 08 2009
  • Mathematica
    L[ {x___} ] := LCM[ x ]; Table[ (2n-1)!!/L[ Range[ 1, 2n-1, 2 ] ], {n, 1, 50} ]
    (* Second program: *)
    Array[#!!/LCM @@ Range[1, #, 2] &[2 # - 1] &, 30] (* Michael De Vlieger, Feb 19 2019 *)
  • PARI
    a(n) = (((2*n)!/n!)/2^n)/lcm(vector(n, i, 2*i-1)); \\ Michel Marcus, Dec 02 2014

Formula

a(n) = A001147(n)/A025547(n). - Michel Marcus, Dec 02 2014

Extensions

Description corrected and sequence extended by Erich Friedman
More terms from Michel Marcus, Dec 02 2014

A024197 a(n) = 3rd elementary symmetric function of the first n+2 odd positive integers.

Original entry on oeis.org

15, 176, 950, 3480, 10045, 24640, 53676, 106800, 197835, 345840, 576290, 922376, 1426425, 2141440, 3132760, 4479840, 6278151, 8641200, 11702670, 15618680, 20570165, 26765376, 34442500, 43872400, 55361475, 69254640, 85938426, 105844200, 129451505
Offset: 1

Views

Author

Keywords

Crossrefs

Contribution from Johannes W. Meijer, Jun 08 2009: (Start)
Equals fourth right hand column of A028338 triangle.
Equals fourth left hand column of A109692 triangle.
Equals fourth right hand column of A161198 triangle divided by 2^m.
(End)

Programs

  • PARI
    Vec(-x*(x^3+33*x^2+71*x+15)/(x-1)^7 + O(x^100)) \\ Colin Barker, Aug 15 2014

Formula

a(n) = n*(n+1)*(n+2)^2*(n^2+3*n+1)/6.
G.f.: -x*(x^3+33*x^2+71*x+15) / (x-1)^7. - Colin Barker, Aug 15 2014
a(n) = A004320(n)*A028387(n). - R. J. Mathar, Oct 01 2016
a(n) = A028338(n+2, n-1), n >= 1, (fourth diagonal). See a crossref. below. - Wolfdieter Lang, Jul 21 2017

A225474 Triangle read by rows, k!*2^k*s_2(n, k) where s_m(n, k) are the Stirling-Frobenius cycle numbers of order m; n >= 0, k >= 0.

Original entry on oeis.org

1, 1, 2, 3, 8, 8, 15, 46, 72, 48, 105, 352, 688, 768, 384, 945, 3378, 7600, 11040, 9600, 3840, 10395, 39048, 97112, 167040, 193920, 138240, 46080, 135135, 528414, 1418648, 2754192, 3857280, 3736320, 2257920, 645120, 2027025, 8196480, 23393376, 49824768, 79892736
Offset: 0

Views

Author

Peter Luschny, May 19 2013

Keywords

Comments

The Stirling-Frobenius cycle numbers are defined in A225470.

Examples

			[n\k][ 0,    1,    2,     3,    4,    5]
[0]    1,
[1]    1,    2,
[2]    3,    8,    8,
[3]   15,   46,   72,    48,
[4]  105,  352,  688,   768,  384,
[5]  945, 3378, 7600, 11040, 9600, 3840.
		

Crossrefs

Programs

  • Mathematica
    SFCSO[n_, k_, m_] := SFCSO[n, k, m] = If[k>n || k<0, 0, If[n == 0 && k == 0, 1, m*k*SFCSO[n-1, k-1, m] + (m*n-1)*SFCSO[n-1, k, m]]]; Table[SFCSO[n, k, 2], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 05 2014, translated from Sage *)
  • Sage
    @CachedFunction
    def SF_CSO(n, k, m):
        if k > n or k < 0 : return 0
        if n == 0 and k == 0: return 1
        return m*k*SF_CSO(n-1, k-1, m) + (m*n-1)*SF_CSO(n-1, k, m)
    for n in (0..8): [SF_CSO(n, k, 2) for k in (0..n)]

Formula

For a recurrence see the Sage program.
T(n, 0) ~ A001147; T(n, n) ~ A000165; T(n, n-1) ~ A014479.
T(n,k) = A028338(n,k) * A000165(k) = A225475(n,k) * A000079(k) = A161198(n,k) * A000142(k). - Philippe Deléham, Jun 25 2015
Previous Showing 21-23 of 23 results.