cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 52 results. Next

A162530 Numbers k whose largest divisor <= sqrt(k) equals 10.

Original entry on oeis.org

100, 110, 120, 130, 140, 150, 160, 170, 190, 200, 230, 250, 290, 310, 370, 410, 430, 470, 530, 590, 610, 670, 710, 730, 790, 830, 890, 970, 1010, 1030, 1070, 1090, 1130, 1270, 1310, 1370, 1390, 1490, 1510, 1570, 1630, 1670, 1730, 1790, 1810, 1910, 1930
Offset: 1

Views

Author

Omar E. Pol, Jul 05 2009

Keywords

Comments

See A161344 for more information.

Crossrefs

Programs

  • Maple
    filter:= n -> andmap(t -> t<=10 or t^2 > n, numtheory:-divisors(n)):
    select(filter, [seq(n,n=100..10000,10)]); # Robert Israel, Aug 16 2018
  • Mathematica
    ld10Q[n_]:=Last[Select[Divisors[n],#<=Sqrt[n]&]]==10; Select[Range[2000],ld10Q]  (* Harvey P. Dale, Jan 30 2011 *)

Formula

Numbers k such that A033676(k) = 10.

Extensions

More terms from Gerard P. Michon, Jul 12 2009

A162532 Numbers k whose largest divisor <= sqrt(k) equals 12.

Original entry on oeis.org

144, 156, 168, 180, 192, 204, 216, 228, 264, 276, 348, 372, 444, 492, 516, 564, 636, 708, 732, 804, 852, 876, 948, 996, 1068, 1164, 1212, 1236, 1284, 1308, 1356, 1524, 1572, 1644, 1668, 1788, 1812, 1884, 1956, 2004, 2076, 2148, 2172, 2292, 2316, 2364
Offset: 1

Views

Author

Omar E. Pol, Jul 05 2009

Keywords

Comments

See A161344 for more information.

Crossrefs

Programs

  • Maple
    A033676 := proc(n) local dvs; dvs := sort(convert(numtheory[divisors](n),list)) ; op(floor((nops(dvs)+1)/2) ,dvs) ; end: for n from 1 to 3500 do if A033676(n) = 12 then printf("%d,",n) ; fi; od: # R. J. Mathar, Jul 13 2009
  • Mathematica
    ld12Q[n_]:=First[Select[Reverse[Divisors[n]],#<=Sqrt[n]&]]==12;Select[ 12*Range[ 200], ld12Q] (* Harvey P. Dale, Mar 29 2013 *)

Formula

Numbers k such that A033676(k)=12.

Extensions

More terms from R. J. Mathar, Jul 13 2009

A162529 Numbers k whose largest divisor <= sqrt(k) equals 9.

Original entry on oeis.org

81, 90, 99, 108, 117, 126, 135, 153, 162, 171, 189, 207, 243, 261, 279, 333, 369, 387, 423, 477, 531, 549, 603, 639, 657, 711, 747, 801, 873, 909, 927, 963, 981, 1017, 1143, 1179, 1233, 1251, 1341, 1359, 1413, 1467, 1503, 1557, 1611, 1629, 1719, 1737, 1773
Offset: 1

Views

Author

Omar E. Pol, Jul 05 2009

Keywords

Comments

See A161344 for more information.

Crossrefs

Programs

  • Maple
    A033676 := proc(n) local dvs; dvs := sort(convert(numtheory[divisors](n),list)) ; op(floor((nops(dvs)+1)/2) ,dvs) ; end: for n from 1 to 2500 do if A033676(n) = 9 then printf("%d,",n) ; fi; od: # R. J. Mathar, Jul 13 2009
  • Mathematica
    lst = {}; For[n = 1, n <= 5000, n++, If[Last[Select[Divisors[n], # <= Sqrt@n &]] == 9, PrependTo[lst, n]]]; Reverse@lst (* Jasper Mulder (jasper.mulder(AT)planet.nl), Jul 14 2009 *)

Formula

Numbers k such that A033676(k)=9.

Extensions

More terms from R. J. Mathar and Jasper Mulder (jasper.mulder(AT)planet.nl), Jul 13 2009

A162531 Numbers k whose largest divisor <= sqrt(k) is 11.

Original entry on oeis.org

121, 132, 143, 154, 165, 176, 187, 198, 209, 220, 231, 242, 253, 275, 297, 319, 341, 363, 385, 407, 451, 473, 517, 539, 583, 605, 649, 671, 737, 781, 803, 847, 869, 913, 979, 1067, 1111, 1133, 1177, 1199, 1243, 1331, 1397, 1441, 1507, 1529, 1639, 1661
Offset: 1

Views

Author

Omar E. Pol, Jul 05 2009

Keywords

Comments

See A161344 for more information.

Crossrefs

Programs

  • Maple
    A033676 := proc(n) local dvs; dvs := sort(convert(numtheory[divisors](n),list)) ; op(floor((nops(dvs)+1)/2) ,dvs) ; end: for n from 1 to 2500 do if A033676(n) = 11 then printf("%d,",n) ; fi; od: # R. J. Mathar, Jul 13 2009
  • Mathematica
    ld = 11;
    selQ[n_] := AllTrue[Divisors[n], # <= ld || #^2 > n&];
    Select[ Range[ld, 200] ld, selQ] (* Jean-François Alcover, Apr 14 2020 *)

Formula

Numbers k such that A033676(k)=11.

Extensions

More terms from R. J. Mathar and Jasper Mulder (jasper.mulder(AT)planet.nl), Jul 13 2009

A162526 Numbers k whose largest divisor <= sqrt(k) equals 6.

Original entry on oeis.org

36, 42, 48, 54, 60, 66, 78, 102, 114, 138, 174, 186, 222, 246, 258, 282, 318, 354, 366, 402, 426, 438, 474, 498, 534, 582, 606, 618, 642, 654, 678, 762, 786, 822, 834, 894, 906, 942, 978, 1002, 1038, 1074, 1086, 1146, 1158, 1182, 1194, 1266, 1338, 1362
Offset: 1

Views

Author

Omar E. Pol, Jul 05 2009

Keywords

Comments

See A161344 for more information.

Crossrefs

Programs

  • Maple
    A033676 := proc(n) local dvs; dvs := sort(convert(numtheory[divisors](n),list)) ; op(floor((nops(dvs)+1)/2) ,dvs) ; end: for n from 1 to 2000 do if A033676(n) = 6 then printf("%d,",n) ; fi; od: # R. J. Mathar, Jul 13 2009
  • Mathematica
    ld6Q[n_]:=Last[Select[Divisors[n],#<=Sqrt[n]&]]==6; Select[Range[ 1400],ld6Q] (* Harvey P. Dale, Mar 08 2012 *)

Formula

Numbers k such that A033676(k)=6.

Extensions

More terms from R. J. Mathar, Jul 13 2009

A164000 Main diagonal of array in A163280.

Original entry on oeis.org

1, 6, 15, 28, 45, 66, 91, 128, 162, 200, 231, 372, 325, 406, 495, 656, 561, 954, 703, 1180, 987, 1078, 1035, 1896, 1375, 1534, 1701, 2324, 1653, 3090, 1891, 3104, 2541, 2686, 3045, 5004, 2701, 3382, 3627, 5560, 3321, 6846, 3655, 6028, 6165, 5014, 4371
Offset: 1

Views

Author

Omar E. Pol, Aug 08 2009

Keywords

Crossrefs

Programs

  • Maple
    A033676 := proc(n) local a, d; a := 0 ; for d in numtheory[divisors](n) do if d^2 <= n then a := max(a, d) ; end if; end do: a; end proc: A163280 := proc(n, k) local r, T ; r := 0 ; for T from k^2 by k do if A033676(T) = k then r := r+1 ; if r = n then RETURN(T) ; end if; end if; end do: end proc: A164000 := proc(n) A163280(n,n) ; end proc: seq(A164000(n),n=1..60) ; # R. J. Mathar, Feb 16 2010
  • Mathematica
    nmax = 50;
    pm = Prime[nmax];
    selDiv[n_] := Select[Divisors[n], #^2 <= n&][[-1]];
    Clear[col];
    col[k_] := col[k] = Select[Range[k pm], selDiv[#] == k&];
    a[n_] := col[n][[n]];
    Array[a, nmax] (* Jean-François Alcover, Mar 24 2020 *)
  • PARI
    lista(nn) = my(v = apply(f, [1..(2*nn-1)^2]), cols = vector(nn, i, select(x->(x==i), v, 1))); vector(nn, i, cols[i][i]); \\ Michel Marcus, Jan 23 2023

Extensions

Terms from a(13) on by R. J. Mathar, Feb 16 2010

A161346 a(n) = A161345(n)/3.

Original entry on oeis.org

3, 4, 5, 6, 7, 9, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271
Offset: 1

Views

Author

Omar E. Pol, Jun 20 2009

Keywords

Comments

Union of {4, 6, 9} and all the odd primes. - Amiram Eldar, Apr 17 2024

Crossrefs

Programs

  • Mathematica
    Select[Range[271], Function[{n, s}, Max[TakeWhile[Divisors[n], # <= s &]] == 3] @@ {#, Sqrt@ #} &[3 #] &] (* Michael De Vlieger, Feb 14 2020 *)

Extensions

Terms beyond a(10) from R. J. Mathar, Jun 24 2009

A163990 Square array read by antidiagonals where the row n lists the numbers k such that their largest divisor <= sqrt(k) equals n.

Original entry on oeis.org

1, 4, 2, 9, 6, 3, 16, 12, 8, 5, 25, 20, 15, 10, 7, 36, 30, 24, 18, 14, 11, 49, 42, 35, 28, 21, 22, 13, 64, 56, 48, 40, 32, 27, 26, 17, 81, 72, 63, 54, 45, 44, 33, 34, 19, 100, 90, 80, 70, 60, 50, 52, 39, 38, 23, 121, 110, 99, 88, 77, 66, 55, 68, 51, 46, 29, 144, 132, 120, 108
Offset: 1

Views

Author

Omar E. Pol, Aug 11 2009

Keywords

Comments

This sequence is a permutation of the natural numbers.
Note that the first row is formed by 1 together the prime numbers and the first column are the squares of the natural numbers.
For more information see A163280, the main entry for this sequence. (See also A161344).

Examples

			Array begins:
1, 2, 3, 5, 7, 11,
4, 6, 8, 10, 14,
9, 12, 15, 18,
16, 20, 24,
25, 30,
36,
See also the array in A163280.
		

Crossrefs

Formula

Row n lists the numbers k such that A033676(k)=n.

A164004 Zero together with row 4 of the array in A163280.

Original entry on oeis.org

0, 5, 10, 18, 28, 40, 54, 70, 88, 108, 130, 154, 180, 208, 238, 270, 304, 340, 378, 418, 460, 504, 550, 598, 648, 700, 754, 810, 868, 928, 990, 1054, 1120, 1188, 1258, 1330, 1404, 1480, 1558, 1638, 1720, 1804, 1890, 1978, 2068, 2160, 2254, 2350, 2448, 2548
Offset: 0

Views

Author

Omar E. Pol, Aug 08 2009

Keywords

Crossrefs

Programs

  • Maple
    A033676 := proc(n) local a,d; a := 0 ; for d in numtheory[divisors](n) do if d^2 <= n then a := max(a,d) ; fi; od: a; end: A163280 := proc(n,k) local r,T ; r := 0 ; for T from k^2 by k do if A033676(T) = k then r := r+1 ; if r = n then RETURN(T) ; fi; fi; od: end: A164004 := proc(n) if n = 0 then 0; else A163280(4,n) ; fi; end: seq(A164004(n),n=0..80) ; # R. J. Mathar, Aug 09 2009
  • Mathematica
    Join[{0, 5}, Table[n*(n + 3), {n, 2, 50}]] (* G. C. Greubel, Aug 28 2017 *)
  • PARI
    x='x+O('x^50); concat([0], Vec(x*(x^3 -3*x^2 +5*x -5)/(x-1)^3)) \\ G. C. Greubel, Aug 28 2017

Formula

Conjectures from Colin Barker, Apr 07 2015: (Start)
a(n) = n*(3+n) = A028552(n) for n > 1.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 4.
G.f.: x*(x^3 - 3*x^2 + 5*x - 5) / (x-1)^3. (End)
E.g.f.: x*(x+4)*exp(x) + x. - G. C. Greubel, Aug 28 2017

Extensions

Extended beyond a(12) by R. J. Mathar, Aug 09 2009

A162348 List of pairs (i,j) of central factors of n, such that i*j = n, where i is the largest divisor of n <= sqrt(n) and j is the smallest divisor of n >= sqrt(n).

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 2, 2, 1, 5, 2, 3, 1, 7, 2, 4, 3, 3, 2, 5, 1, 11, 3, 4, 1, 13, 2, 7, 3, 5, 4, 4, 1, 17, 3, 6, 1, 19, 4, 5, 3, 7, 2, 11, 1, 23, 4, 6, 5, 5, 2, 13, 3, 9, 4, 7, 1, 29, 5, 6, 1, 31, 4, 8, 3, 11, 2, 17, 5, 7, 6, 6, 1, 37, 2, 19, 3, 13, 5, 8, 1, 41, 6, 7, 1, 43, 4, 11, 5, 9, 2, 23, 1, 47, 6, 8, 7
Offset: 1

Views

Author

Omar E. Pol, Jul 04 2009

Keywords

Comments

Note that if n is a square then the square root of n appears repeated: i = j = sqrt(n).
Squarest (least oblong) integral rectangle with area n. This has minimal semiperimeter (A063655), since s = i + j = i + n/i is minimal when ds/di = 1 - n/i^2 = 0, i.e., n = i^2. - Daniel Forgues, Sep 29 2014

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{d = Divisors@n}, len = Length[d]/2; {d[[Ceiling@len]], d[[Floor[len + 1]] ]}]; f[1] = {1, 1}; Array[f, 49] // Flatten (* Robert G. Wilson v, Aug 17 2009 *)

Extensions

a(35) and further terms from Robert G. Wilson v, Aug 17 2009; corrected Aug 18 2009
Previous Showing 11-20 of 52 results. Next