cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 120 results. Next

A161438 Number of reduced words of length n in the Weyl group A_6.

Original entry on oeis.org

1, 6, 20, 49, 98, 169, 259, 359, 455, 531, 573, 573, 531, 455, 359, 259, 169, 98, 49, 20, 6, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Nov 30 2009

Keywords

Comments

Computed with MAGMA using commands similar to those used to compute A161409.

References

  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial.
  • N. Bourbaki, Groupes et alg. de Lie, Chap. 4, 5, 6. (The group is defined in Planche I.)

Formula

G.f. for A_m is the polynomial Prod_{k=1..m}(1-x^(k+1))/(1-x). Only finitely many terms are nonzero. This is a row of the triangle in A008302.

A161439 Number of reduced words of length n in the Weyl group A_7.

Original entry on oeis.org

1, 7, 27, 76, 174, 343, 602, 961, 1415, 1940, 2493, 3017, 3450, 3736, 3836, 3736, 3450, 3017, 2493, 1940, 1415, 961, 602, 343, 174, 76, 27, 7, 1
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Nov 30 2009

Keywords

Comments

Computed with MAGMA using commands similar to those used to compute A161409.

References

  • N. Bourbaki, Groupes et alg. de Lie, Chap. 4, 5, 6. (The group is defined in Planche I.)
  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial.

Crossrefs

Row n=8 of A008302.

Formula

G.f. for A_m is the polynomial Product_{k=1..m} (1-x^(k+1))/(1-x). Only finitely many terms are nonzero. This is a row of the triangle in A008302.

A161456 Number of reduced words of length n in the Weyl group A_8.

Original entry on oeis.org

1, 8, 35, 111, 285, 628, 1230, 2191, 3606, 5545, 8031, 11021, 14395, 17957, 21450, 24584, 27073, 28675, 29228, 28675, 27073, 24584, 21450, 17957, 14395, 11021, 8031, 5545, 3606, 2191, 1230, 628, 285, 111, 35, 8, 1
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Nov 30 2009

Keywords

Comments

Computed with MAGMA using commands similar to those used to compute A161409.

References

  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial.
  • N. Bourbaki, Groupes et alg. de Lie, Chap. 4, 5, 6. (The group is defined in Planche I.)

Crossrefs

Row n=9 of A008302.

Formula

G.f. for A_m is the polynomial Prod_{k=1..m}(1-x^(k+1))/(1-x). Only finitely many terms are nonzero. This is a row of the triangle in A008302.

A161457 Number of reduced words of length n in the Weyl group A_9.

Original entry on oeis.org

1, 9, 44, 155, 440, 1068, 2298, 4489, 8095, 13640, 21670, 32683, 47043, 64889, 86054, 110010, 135853, 162337, 187959, 211089, 230131, 243694, 250749, 250749, 243694, 230131, 211089, 187959, 162337, 135853, 110010, 86054, 64889, 47043, 32683, 21670, 13640, 8095, 4489, 2298, 1068, 440, 155, 44, 9, 1
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Nov 30 2009

Keywords

Comments

Computed with Magma using commands similar to those used to compute A161409.

References

  • N. Bourbaki, Groupes et alg. de Lie, Chap. 4, 5, 6. (The group is defined in Planche I.)
  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[QFactorial[9+1,q],{q,0,9*(9+1)/2}],q] (* Wouter Meeussen, Jul 12 2014 *)

Formula

G.f. for A_m is the polynomial Product_{k=1..m} (1-x^(k+1))/(1-x). Only finitely many terms are nonzero. This is a row of the triangle in A008302.

A161458 Number of reduced words of length n in the Weyl group A_10.

Original entry on oeis.org

1, 10, 54, 209, 649, 1717, 4015, 8504, 16599, 30239, 51909, 84591, 131625, 196470, 282369, 391939, 526724, 686763, 870233, 1073227, 1289718, 1511742, 1729808, 1933514, 2112319, 2256396, 2357475, 2409581, 2409581, 2357475, 2256396, 2112319, 1933514, 1729808, 1511742
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Nov 30 2009

Keywords

Comments

Computed with MAGMA using commands similar to those used to compute A161409.

References

  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial.
  • N. Bourbaki, Groupes et alg. de Lie, Chap. 4, 5, 6. (The group is defined in Planche I.)

Crossrefs

Row n=11 of A008302.

Formula

G.f. for A_m is the polynomial Prod_{k=1..m}(1-x^(k+1))/(1-x). Only finitely many terms are nonzero. This is a row of the triangle in A008302.

A161459 Number of reduced words of length n in the Weyl group A_11.

Original entry on oeis.org

1, 11, 65, 274, 923, 2640, 6655, 15159, 31758, 61997, 113906, 198497, 330121, 526581, 808896, 1200626, 1726701, 2411747, 3277965, 4342688, 5615807, 7097310, 8775209, 10624132, 12604826, 14664752, 16739858, 18757500, 20640357, 22311069, 23697232, 24736324, 25380120
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Nov 30 2009

Keywords

Comments

Computed with MAGMA using commands similar to those used to compute A161409.

References

  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial.
  • N. Bourbaki, Groupes et alg. de Lie, Chap. 4, 5, 6. (The group is defined in Planche I.)

Crossrefs

Row n=12 of A008302.

Formula

G.f. for A_m is the polynomial Prod_{k=1..m}(1-x^(k+1))/(1-x). Only finitely many terms are nonzero. This is a row of the triangle in A008302.

A161461 Number of reduced words of length n in the Weyl group A_12.

Original entry on oeis.org

1, 12, 77, 351, 1274, 3914, 10569, 25728, 57486, 119483, 233389, 431886, 762007, 1288587, 2097472, 3298033, 5024460, 7435284, 10710609, 15046642, 20647290, 27712842, 36426054, 46936280, 59342609, 73677240, 89890517, 107839121, 127278852, 147863220, 169148705
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Nov 30 2009

Keywords

Comments

Computed with MAGMA using commands similar to those used to compute A161409.

References

  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial.
  • N. Bourbaki, Groupes et alg. de Lie, Chap. 4, 5, 6. (The group is defined in Planche I.)

Crossrefs

Row n=13 of A008302.

Formula

G.f. for A_m is the polynomial Prod_{k=1..m}(1-x^(k+1))/(1-x). Only finitely many terms are nonzero. This is a row of the triangle in A008302.

A161465 Number of reduced words of length n in the Weyl group A_13.

Original entry on oeis.org

1, 13, 90, 441, 1715, 5629, 16198, 41926, 99412, 218895, 452284, 884170, 1646177, 2934764, 5032235, 8330256, 13354639, 20789572, 31498907, 46541635, 67178356, 94865470, 131234038, 178050835, 237160055, 310405409, 399533919, 506084453, 631265833, 775831020, 939955265
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Nov 30 2009

Keywords

Comments

Computed with MAGMA using commands similar to those used to compute A161409.

References

  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial.
  • N. Bourbaki, Groupes et alg. de Lie, Chap. 4, 5, 6. (The group is defined in Planche I.)

Crossrefs

Row n=14 of A008302.

Formula

G.f. for A_m is the polynomial Prod_{k=1..m}(1-x^(k+1))/(1-x). Only finitely many terms are nonzero. This is a row of the triangle in A008302.

A161475 Number of reduced words of length n in the Weyl group A_14.

Original entry on oeis.org

1, 14, 104, 545, 2260, 7889, 24087, 66013, 165425, 384320, 836604, 1720774, 3366951, 6301715, 11333950, 19664205, 33018831, 53808313, 85306779, 131846699, 199019426, 293868698, 425060810, 603012233, 839953393, 1149906518, 1548556267, 2052994543, 2681325612
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Nov 30 2009

Keywords

Comments

Computed with MAGMA using commands similar to those used to compute A161409.

References

  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial.
  • N. Bourbaki, Groupes et alg. de Lie, Chap. 4, 5, 6. (The group is defined in Planche I.)

Crossrefs

Row n=15 of A008302.

Programs

  • Maple
    b:= proc(u, o) option remember; expand(`if`(u+o=0, 1,
           add(b(u+j-1, o-j)*x^(u+j-1), j=1..o)+
           add(b(u-j, o+j-1)*x^(u-j), j=1..u)))
        end:
    coeffs(b(15, 0));  # Alois P. Heinz, Mar 21 2025
  • Mathematica
    b[u_, o_] := b[u, o] = Expand[If[u+o == 0, 1, Sum[b[u+j-1, o-j]*x^(u+j-1), {j, 1, o}] + Sum[b[u-j, o+j-1]*x^(u-j), {j, 1, u}]]];
    CoefficientList[b[15, 0], x] (* Jean-François Alcover, May 16 2025, after Alois P. Heinz *)

Formula

G.f. for A_m is the polynomial Product_{k=1..m} (1-x^(k+1))/(1-x). Only finitely many terms are nonzero. This is a row of the triangle in A008302.

A161476 Number of reduced words of length n in the Weyl group A_15.

Original entry on oeis.org

1, 15, 119, 664, 2924, 10813, 34900, 100913, 266338, 650658, 1487262, 3208036, 6574987, 12876702, 24210652, 43874857, 76893687, 130701986, 216008661, 347854815, 546871981, 840732790, 1265769513, 1868715733, 2708503701, 3858025899, 5405745562, 7457019331, 10134977992
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Nov 30 2009

Keywords

Comments

Computed with MAGMA using commands similar to those used to compute A161409.

References

  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial.
  • N. Bourbaki, Groupes et alg. de Lie, Chap. 4, 5, 6. (The group is defined in Planche I.)

Crossrefs

Row n=16 of A008302.

Formula

G.f. for A_m is the polynomial Prod_{k=1..m}(1-x^(k+1))/(1-x). Only finitely many terms are nonzero. This is a row of the triangle in A008302.
Previous Showing 41-50 of 120 results. Next